共查询到20条相似文献,搜索用时 9 毫秒
1.
Microscale Distribution of Nitrification Activity in Sediment Determined with a Shielded Microsensor for Nitrate 总被引:16,自引:3,他引:16 下载免费PDF全文
Microprofiles of O2 and NO3- were measured simultaneously in freshwater sediment with microsensors which were completely free from electrical interference because of coaxial designs. Depth profiles of nitrification (NO3- production) and denitrification (NO3- consumption) were subsequently determined by computer simulation of the measured microprofiles. The nitrifying bacterial community responded very quickly to changes in environmental conditions, and new steady-state microprofiles of O2 and NO3- were usually approached within a few hours after perturbation. Nitrification started quickly after introduction of O2 in previously anoxic layers, suggesting prolonged survival of the nitrifiers during anaerobiosis. Changes in the availability of O2 and NH4+ greatly affected the nitrification profile, and there was a high rate of coupled nitrification-denitrification under conditions in which nitrification occurred right above the oxic-anoxic interface. Addition of C2H2 rapidly removed the NO3- peaks, indicating that NO3- production was due mainly to autotrophic nitrification. 相似文献
2.
Simulation Model of the Coupling between Nitrification and Denitrification in a Freshwater Sediment 下载免费PDF全文
T. Henry Blackburn Nicholas D. Blackburn Kim Jensen Nils Risgaard-Petersen 《Applied microbiology》1994,60(9):3089-3095
A model was constructed to simulate the results of experiments which investigated nitrification and denitrification in the freshwater sediment of Lake Vilhelmsborg, Denmark (K. Jensen, N. P. Sloth, N. Risgaard-Petersen, S. Rysgaard, and N. P. Revsbech, Appl. Environ. Microbiol. 60:2094-2100, 1994). The model output faithfully represented the profiles of O2 and NO3- and rates of nitrification, denitrification, and O2 consumption as the O2 concentration in the overlying water was increased from 10 to 600 μM. The model also accurately predicted the response, to increasing O2 concentrations, of the integrated (micromoles per square meter per hour) rates of nitrification and denitrification. The simulated rates of denitrification of NO3- diffusing from the overlying water (Dw) and of NO3- generated by nitrification within the sediment (Dn) corresponded to the experimental rates as the O2 concentration in the overlying water was altered. The predicted Dw and Dn rates, as NO3- concentration in the overlying water was changed, closely resembled those determined experimentally. The model was composed of 41 layers 0.1 mm thick, of which 3 represented the diffusive boundary layer in the water. Large first-order rate constants for nitrification and denitrification were required to completely oxidize all NH4+ diffusing from the lower sediment layers and to remove much of the NO3- produced. In addition to the flux of NH4+ from below, the model required a flux of an electron donor, possibly methane. Close coupling between nitrification and denitrification, achieved by allowing denitrification to tolerate some O2 (~10 μM), was necessary to reproduce the real data. Spatial separation of the two processes (no toleration by denitrification of O2) resulted in too high NO3- concentrations and too low rates of denitrification. 相似文献
3.
Estimation of Nitrification and Denitrification from Microprofiles of Oxygen and Nitrate in Model Sediment Systems 总被引:7,自引:5,他引:7 下载免费PDF全文
Kim Jensen Niels P. Sloth Nils Risgaard-Petersen Sren Rysgaard Niels Peter Revsbech 《Applied microbiology》1994,60(6):2094-2100
The coupling between nitrification and denitrification and the regulation of these processes by oxygen were studied in freshwater sediment microcosms with O2 and NO3- microsensors. Depth profiles of nitrification (indicated as NO3- production), denitrification (indicated as NO3- consumption), and O2 consumption activities within the sediment were calculated from the measured concentration profiles. From the concentration profiles, it was furthermore possible to distinguish between the rate of denitrification based on the diffusional supply of NO3- from the overlying water and the rate based on NO3- supplied by benthic nitrification (Dw and Dn, respectively). An increase in O2 concentration caused a deeper O2 penetration while a decrease in Dw and an increase in Dn were observed. The relative importance for total denitrification of NO3- produced by nitrification thus increased compared with NO3- supplied from the water phase. The decrease in Dw at high oxygen was due to an increase in diffusion path for NO3- from the overlying water to the denitrifying layers in the anoxic sediment. At high O2 concentrations, nitrifying activity was restricted to the lower part of the oxic zone where there was a continuous diffusional supply of NH4+ from deeper mineralization processes, and the long diffusion path from the nitrification zone to the overlying water compared with the path to the denitrifying layers led to a stimulation in Dn. 相似文献
4.
Sediment Nitrification, Denitrification, and Nitrous Oxide Production in a Deep Arctic Lake 总被引:1,自引:4,他引:1 下载免费PDF全文
We used a combination of 15N tracer methods and a C2H2 blockage technique to determine the role of sediment nitrification and denitrification in a deep oligotrophic arctic lake. Inorganic nitrogen concentrations ranged between 40 and 600 nmol · cm−3, increasing with depth below the sediment-water interface. Nitrate concentrations were at least 10 times lower, and nitrate was only detectable within the top 0 to 6 cm of sediment. Eh and pH profiles showed an oxidized surface zone underlain by more reduced conditions. The lake water never became anoxic. Sediment Eh values ranged from −7 to 484 mV, decreasing with depth, whereas pH ranged from 6.0 to 7.3, usually increasing with depth. The average nitrification rate (49 ng of N · cm−3 · day−1) was similar to the average denitrification rate (44 ng of N · cm−3 · day−1). In situ N2O production from nitrification and denitrification ranged from 0 to 25 ng of N · cm−3 · day−1. Denitrification appears to depend on the supply of nitrate by nitrification, such that the two processes are coupled functionally in this sediment system. However, the low rates result in only a small nitrogen loss. 相似文献
5.
Denitrification, Dissimilatory Reduction of Nitrate to Ammonium, and Nitrification in a Bioturbated Estuarine Sediment as Measured with 15N and Microsensor Techniques 总被引:3,自引:0,他引:3 下载免费PDF全文
Svend Jrgen Binnerup Kim Jensen Niels Peter Revsbech Mikael Hjorth Jensen Jan Srensen 《Applied microbiology》1992,58(1):303-313
Nitrogen and oxygen transformations were studied in a bioturbated (reworked by animals) estuarine sediment (Norsminde Fjord, Denmark) by using a combination of 15N isotope (NO3-), specific inhibitor (C2H2), and microsensor (N2O and O2) techniques in a continuous-flow core system. The estuarine water was NO3- rich (125 to 600 μM), and NO3- was consistently taken up by the sediment on the four occasions studied. Total NO3- uptake (3.6 to 34.0 mmol of N m-2 day-1) corresponded closely to N2 production (denitrification) during the experimental steady state, which indicated that dissimilatory, as well as assimilatory, NO3- reduction to NH4+ was insignificant. When C2H2 was applied in the flow system, denitrification measured as N2O production was often less (58 to 100%) than the NO3- uptake because of incomplete inhibition of N2O reduction. The NO3- formed by nitrification and not immediately denitrified but released to the overlying water, uncoupled nitrification, was calculated both from 15NO3- dilution and from changes in NO3- uptake before and after C2H2 addition. These two approaches gave similar results, with rates ranging between 0 and 8.1 mmol of N m-2 day-1 on the four occasions. Attempts to measure total nitrification activity by the difference between NH4+ fluxes before and after C2H2 addition failed because of non-steady-state NH4+ fluxes. The vertical distribution of denitrification and oxygen consumption was studied by use of N2O and O2 microelectrodes. The N2O profiles measured during the experimental steady state were often irregularly shaped, and the buildup of N2O after C2H2 was added was much too fast to be described by a simple diffusion model. Only bioturbation by a dense population of infauna could explain these observations. This was corroborated by the relationship between diffusive and total fluxes, which showed that only 19 to 36 and 29 to 62% of the total O2 uptake and denitrification, respectively, were due to diffusion-reaction processes at the regular sediment surface, excluding animal burrows. 相似文献
6.
Annual Pattern of Denitrification and Nitrate Ammonification in Estuarine Sediment 总被引:9,自引:2,他引:9 下载免费PDF全文
Kirsten Schannong Jrgensen 《Applied microbiology》1989,55(7):1841-1847
The seasonal variation and depth distribution of the capacity for denitrification and dissimilatory NO3− reduction to NH4+ (NO3− ammonification) were studied in the upper 4 cm of the sediment of Norsminde Fjord estuary, Denmark. A combination of C2H2 inhibition and 15N isotope techniques was used in intact sediment cores in short-term incubations (maximum, 4 h). The denitrification capacity exhibited two maxima, one in the spring and one in the fall, whereas the capacity for NO3− ammonification was maximal in the late summer, when sediments were progressively reduced. The denitrification capacity was always highest in the uppermost 1 cm of the sediment and declined with depth. The NO3− ammonification was usually higher with depth, but the maximum activity in late summer was observed within the upper 1 cm. The capacity for NO3− incorporation into organic material was investigated on two occasions in intact sediment cores and accounted for less than 5% of the total NO3− reduction. Denitrification accounted for between 13 and 51% of the total NO3− reduction, and NH4+ production accounted for between 4 and 21%, depending on initial rates during the time courses. Changes of the rates during the incubation were observed in the late summer, which reflected synthesis of denitrifying enzymes. This time lag was eliminated in experiments with mixed sediment because of preincubation with NO3− and alterations of the near-environmental conditions. The initial rates obtained in intact sediment cores therefore reflect the preexisting enzyme content of the sediment. 相似文献
7.
Differential Inhibition by Allylsulfide of Nitrification and Methane Oxidation in Freshwater Sediment 下载免费PDF全文
Addition of nitrapyrin, allylthiourea, C(inf2)H(inf2), and CH(inf3)F to freshwater sediment slurries inhibited CH(inf4) oxidation and nitrification to similar extents. Dicyandiamide and allylsulfide were less inhibitory for CH(inf4) oxidation than for nitrification. Allylsulfide was the most potent inhibitor of nitrification, and the estimated 50% inhibitory concentrations for this process and CH(inf4) oxidation were 0.2 and 121 (mu)M, respectively. At a concentration of 2 (mu)M allylsulfide, growth and CH(inf4) oxidation activity of Methylosinus trichosporium OB3b were not inhibited. Allylsulfide at 200 (mu)M inhibited the growth of M. trichosporium by approximately 50% but did not inhibit CH(inf4) oxidation activity. Nitrite production by cells of M. trichosporium was not significantly affected by allylsulfide, except at a concentration of 2 mM, when growth and CH(inf4) oxidation were also inhibited by about 50%. Methane monooxygenase activity present in soluble fractions of M. trichosporium was not inhibited significantly by allylsulfide at either 200 (mu)M or 2 mM. These results suggest that the partial inhibition of CH(inf4) oxidation in sediment slurries by high allylsulfide concentrations may be caused by an inhibition of the growth of methanotrophs rather than an inhibition of methane monooxygenase activity specifically. We conclude that allylsulfide is a promising tool for the study of interactions of methanotrophs and nitrifiers in N cycling and CH(inf4) turnover in natural systems. 相似文献
8.
Capacity for Denitrification and Reduction of Nitrate to Ammonia in a Coastal Marine Sediment 总被引:14,自引:23,他引:14 下载免费PDF全文
Jan Srensen 《Applied microbiology》1978,35(2):301-305
The capacity for dissimilatory reduction of NO3− to N2 (N2O) and NH4+ was measured in 15NO3−-amended marine sediment. Incubation with acetylene (7 × 10−3 atmospheres [normal]) caused accumulation of N2O in the sediment. The rate of N2O production equaled the rate of N2 production in samples without acetylene. Complete inhibition of the reduction of N2O to N2 suggests that the “acetylene blockage technique” is applicable to assays for denitrification in marine sediments. The capacity for reduction of NO3− by denitrification decreased rapidly with depth in the sediment, whereas the capacity for reduction of NO3− to NH4+ was significant also in deeper layers. The data suggested that the latter process may be equally as significant as denitrification in the turnover of NO3− in marine sediments. 相似文献
9.
Estimation of Sediment Denitrification Rates at In Situ Nitrate Concentrations 总被引:1,自引:9,他引:1 下载免费PDF全文
The denitrification rates in a marine sediment, estimated by using 15N-nitrate, Vmax, Km, and sediment nitrate concentrations, were 12.5 and 2.0 nmol of N2-N cm−3 day−1 at 0 to 1 and 1 to 3 cm, respectively, at 12°C. The total rate was 165 nmol of N2-N m−2 day−1. 相似文献
10.
Effects of Methane Metabolism on Nitrification and Nitrous Oxide Production in Polluted Freshwater Sediment 总被引:2,自引:2,他引:2 下载免费PDF全文
We report the effect of CH4 and of CH4 oxidation on nitrification in freshwater sediment from Hamilton Harbour, Ontario, Canada, a highly polluted ecosystem. Aerobic slurry experiments showed a high potential for aerobic N2O production in some sites. It was suppressed by C2H2, correlated to NO3- production, and stimulated by NH4+ concentration, supporting the hypothesis of a nitrification-dependent source for this N2O production. Diluted sediment slurries supplemented with CH4 (1 to 24 μM) showed earlier and enhanced nitrification and N2O production compared with unsupplemented slurries (≤1 μM CH4). This suggests that nitrification by methanotrophs may be significant in freshwater sediment under certain conditions. Suppression of nitrification was observed at CH4 concentrations of 84 μM and greater, possibly through competition for O2 between methanotrophs and NH4+ -oxidizing bacteria and/or competition for mineral N between these two groups of organisms. In Hamilton Harbour sediment, the very high CH4 concentrations (1.02 to 6.83 mM) which exist would probably suppress nitrification and favor NH4+ accumulation in the pore water. Indeed, NH4+ concentrations in Hamilton Harbour sediment are higher than those found in other lakes. We conclude that the impact of CH4 metabolism on N cycling processes in freshwater ecosystems should be given more attention. 相似文献
11.
Correlation between Anammox Activity and Microscale Distribution of Nitrite in a Subtropical Mangrove Sediment 总被引:6,自引:2,他引:6 下载免费PDF全文
Rikke Louise Meyer Nils Risgaard-Petersen Diane Elizabeth Allen 《Applied microbiology》2005,71(10):6142-6149
The distribution of anaerobic ammonium oxidation (anammox) in nature has been addressed by only a few environmental studies, and our understanding of how anammox bacteria compete for substrates in natural environments is therefore limited. In this study, we measure the potential anammox rates in sediment from four locations in a subtropical tidal river system. Porewater profiles of NOx− (NO2− plus NO3−) and NO2− were measured with microscale biosensors, and the availability of NO2− was compared with the potential for anammox activity. The potential rate of anammox increased with increasing distance from the mouth of the river and correlated strongly with the production of nitrite in the sediment and with the average concentration or total pool of nitrite in the suboxic sediment layer. Nitrite accumulated both from nitrification and from NOx− reduction, though NOx− reduction was shown to have the greatest impact on the availability of nitrite in the suboxic sediment layer. This finding suggests that denitrification, though using NO2− as a substrate, also provides a substrate for the anammox process, which has been suggested in previous studies where microscale NO2− profiles were not measured. 相似文献
12.
13.
Influence of Nitrate and Ammonium Nutrition on the Uptake, Assimilation, and Distribution of Nutrients in Ricinus communis 总被引:15,自引:2,他引:15 下载免费PDF全文
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3− or NH4+, the solutions being maintained at pH 5.5. In NO3−-fed plants excess nutrient anion over cation uptake was equivalent to net OH− efflux, and the total charge from NO3− and SO42− reduction equated to the sum of organic anion accumulation plus net OH− efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3− that is taken up and reduced in NO3−-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3−-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients. 相似文献
14.
Regulation of Nitrate Assimilation and Nitrate Respiration in Aerobacter aerogenes 总被引:12,自引:12,他引:12 下载免费PDF全文
The influence of growth conditions on assimilatory and respiratory nitrate reduction in Aerobacter aerogenes was studied. The level of nitrate reductase activity in cells, growing in minimal medium with nitrate as the sole nitrogen source, was much lower under aerobic than anaerobic conditions. Further, the enzyme of the aerobic cultures was very sensitive to sonic disintegration, as distinct from the enzyme of anaerobic cultures. When a culture of A. aerogenes was shifted from anaerobic growth in minimal medium with nitrate and NH(4) (+) to aerobiosis in the same medium, but without NH(4) (+), the production of nitrite stopped instantaneously and the total activity of nitrate reductase decreased sharply. Moreover, there was a lag in growth of about 3 hr after such a shift. After resumption of growth, the total enzymatic activity increased again slowly and simultaneously became gradually sensitive to sonic disintegration. These findings show that oxygen inactivates the anaerobic nitrate reductase and represses its further formation; only after a de novo synthesis of nitrate reductase with an assimilatory function will growth be resumed. The enzyme in aerobic cultures was not significantly inactivated by air, only by pure oxygen. The formation of the assimilatory enzyme complex was repressed, however, by NH(4) (+), under both aerobic and anaerobic conditions. The results indicate that the formation of the assimilatory enzyme complex and that of the respiratory enzyme complex are regulated differently. We suggest that both complexes have a different composition, but that the nitrate reductase in both cases is the same protein. 相似文献
15.
异养硝化细菌脱氮特性及研究进展 总被引:2,自引:0,他引:2
异养硝化细菌能够在利用有机碳源生长的同时将含氮化合物硝化生成羟胺、亚硝酸盐、硝酸盐等产物, 多数还能同时进行好氧反硝化作用, 直接将硝化产物转化为含氮气体。因此, 这类细菌已成为废水处理中生物脱氮新工艺的重要研究对象。本文综述了目前所分离出的一些异养硝化菌的脱氮特性, 分析了各种环境条件如温度、pH、溶解氧、碳源类型、C/N以及抑制剂等对异养硝化菌的影响, 并介绍了异养硝化菌的应用现状及前景。 相似文献
16.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis 相似文献
17.
The Influence of Ambient Nitrate, Temperature, and Light on Nitrate Assimilation in Sudangrass Seedlings 总被引:2,自引:0,他引:2
Seedlings of Sundangrass (Sorghum Sudanese [Piper] Stapf.) were grown 10 to 13 days of age in a nutrient solution containing nitrate and then placed under treatment conditions for 24 h before assays of nitrate assimilation were begun. Nitrate uptake was determined by its disappearance from the ambient solution. In vivo reduction of nitrate was determined by the overall balance between the amount taken up and the change in tissue concentration of nitrate during the experiments. Nitrate reductase activity was determined from tissue slices. In vivo reduction was strongly regulated by uptake in response to time and ambient nitrate concentration, temperature and light. Nitrate reduction responded to the concentration of nitrate supplied by uptake and by a storage pool, since reduction often exceeded uptake. Nitrate reductase activity in tissue slices was exponential in initial response to increasing temperature. After a 24-h equilibration period at each temperature, the activity was lower at higher temperatures. In contrast, actual reduction of nitrate increased linearly with increasing temperature between 15 and 24°C in the plants equilibrated 24 h at each temperature. Nitrate uptake and reduction were greatly inhibited under low light conditions, with reduction inhibited more than uptake., The effect of ambient nitrate, temperature, and light on the nitrate assimilatory processes help to explain observations reported on nitrate accumulation by Sudangrass forage. 相似文献
18.
19.
Nitrogen (N) pollution is a problem in many large temperate zone rivers, and N retention in river channels is often small
in these systems. To determine the potential for floodplains to act as N sinks during overbank flooding, we combined monitoring,
denitrification assays, and experimental nitrate (NO3− -N) additions to determine how the amount and form of N changed during flooding and the processes responsible for these changes
in the Wisconsin River floodplain (USA). Spring flooding increased N concentrations in the floodplain to levels equal to the
river. As discharge declined and connectivity between the river and floodplain was disrupted, total dissolved N decreased
over 75% from 1.41 mg l−1, equivalent to source water in the Wisconsin River on 14 April 2001, to 0.34 mg l−1 on 22 April 2001. Simultaneously NO3− -N was attenuated almost 100% from 1.09 to <0.002 mg l−1. Unamended sediment denitrification rates were moderate (0–483 μg m−2 h−1) and seasonally variable, and activity was limited by the availability of NO
3− -N on all dates. Two experimental NO3− -N pulse additions to floodplain water bodies confirmed rapid NO3− -N depletion. Over 80% of the observed NO
3− -N decline was caused by hydrologic export for addition #1 but only 22% in addition #2. During the second addition, a significant
fraction (>60%) of NO3− -N mass loss was not attributable to hydrologic losses or conversion to other forms of N, suggesting that denitrification
was likely responsible for most of the NO3− -N disappearance. Floodplain capacity to decrease the dominant fraction of river borne N within days of inundation demonstrates
that the Wisconsin River floodplain was an active N sink, that denitrification often drives N losses, and that enhancing connections
between rivers and their floodplains may enhance overall retention and reduce N exports from large basins. 相似文献
20.
Estimates of Denitrification and Nitrification in Coastal and Estuarine Sediments 总被引:8,自引:5,他引:8 下载免费PDF全文
Denitrification and nitrification in sediments of Tama Estuary and Odawa Bay, Japan, were investigated by the combined use of a continuous-flow sediment-water system and a 15N tracer technique. At Odawa Bay, the nitrification rate was comparable to the nitrate reduction rate, and 70% of the N2 evolved originated from nitrogenous oxides (nitrate and nitrite) which were produced by the action of nitrifying bacteria in the sediments. At Tama Estuary, the nitrate reduction rate was 11 to 17 times higher than the nitrification rate, and nitrogenous oxides derived from ammonium accounted for only 6 to 9% of the N2 evolution by denitrification. 相似文献