首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To clarify the role of core protein phosphorylation in pregenomic-RNA encapsidation of human and duck hepatitis B viruses (HBV and DHBV, respectively), we have examined the phosphorylation states of different forms of intracellular HBV core protein and the phenotypic effects of mutations in the phosphorylation sites of HBV and DHBV core proteins. We show that HBV core protein is phosphorylated to similar extents in the form of protein dimers and after further assembly in pregenomic RNA-containing capsids. Individual and multiple substitutions of alanine and aspartic acid for serine in the phosphorylation sites of HBV core protein resulted in site-specific and synergistic effects on RNA encapsidation, ranging from 2-fold enhancement to more than 10-fold inhibition. Core protein variants with mutations in all phosphorylation sites exhibited dominant-negative effects on RNA encapsidation by wild-type protein. The results suggest that the presence of phosphoserine at position 162 of HBV core protein is required for pregenomic-RNA encapsidation, whereas phosphoserine at position 170 optimizes the process and serine might be preferable in position 155. Examination of the pregenomic-RNA-encapsidating capacities of DHBV core protein variants, in which four phosphorylation sites were jointly mutated to alanine or aspartic acid, suggests that phosphorylation of DHBV core protein at these sites may optimize pregenomic-RNA encapsidation but that its impact is much less profound than in the case of HBV. The possible mechanisms by which RNA encapsidation may be modulated by core protein phosphorylation are discussed in the context of the observed differences between the two viruses.  相似文献   

3.
Ostrow KM  Loeb DD 《Journal of virology》2004,78(16):8780-8787
Packaging of hepadnavirus pregenomic RNA (pgRNA) into capsids, or encapsidation, requires several viral components. The viral polymerase (P) and the capsid subunit (C) are necessary for pgRNA encapsidation. Previous studies of duck hepatitis B virus (DHBV) indicated that two cis-acting sequences on pgRNA are required for encapsidation: epsilon, which is near the 5' end of pgRNA, and region II, located near the middle of pgRNA. Later studies suggested that the intervening sequence between these two elements may also make a contribution. It has been demonstrated for DHBV that epsilon interacts with P to facilitate encapsidation, but it is not known how other cis-acting sequences contribute to encapsidation. We analyzed chimeras of DHBV and a related virus, heron hepatitis B virus (HHBV), to gain insight into the interactions between the various viral components during pgRNA encapsidation. We learned that having epsilon and P derived from the same virus was not sufficient for high levels of encapsidation, implying that other viral interactions contribute to encapsidation. Chimeric analysis showed that a large sequence containing region II may interact with P and/or C for efficient encapsidation. Further analysis demonstrated that possibly an RNA-RNA interaction between the intervening sequence and region II facilitates pgRNA encapsidation. Together, these results identify functional interactions among various viral components that contribute to pgRNA encapsidation.  相似文献   

4.
5.
6.
The pregenomic RNA (pgRNA) of hepadnaviruses is packaged into capsids where it is reverse transcribed to yield mature DNA genomes. This report describes differences between the 3' region and other regions of the pgRNA isolated from capsids. Analysis of capsid pgRNA isolated by using an established method involving micrococcal nuclease treatment demonstrated reduced levels of the 3' region of the pgRNA compared to the 5' region. This underrepresentation of the 3' region was partly a result of microccocal nuclease digestion of the 3' region because isolation of capsid pgRNA by an alternative method that did not involve nuclease treatment led to a greater, but not complete, recovery of the 3' region. These results indicate that the 3' region of the capsid pgRNA is susceptible to micrococcal nuclease digestion during its isolation and that the 3' region can still be underrepresented when capsid pgRNA is isolated without nuclease digestion. Additional experiments show that the 3' ends of capsid pgRNA isolated by micrococcal nuclease treatment are heterogeneously dispersed from nucleotide 2577 to the poly(A) tail. These data provide evidence that the 3' region of the capsid pgRNA has biochemical properties different from those of its 5' region. Possibly, the 3' region of the pgRNA is not packaged into the interior of the capsid but rather is associated with a part of the capsid where it is susceptible to microccocal nuclease digestion.  相似文献   

7.
8.
Heron hepatitis B virus (HHBV) is an avian hepadnavirus that is closely related to duck hepatitis B virus (DHBV). To learn more about the mechanism of hepadnavirus replication, we characterized a clone of HHBV that contains a substitution of DHBV sequence from nucleotide coordinates 403 to 1364. This clone, named HDE1, expresses a chimeric pregenomic RNA, a chimeric polymerase (P) protein, and a core (C) protein with a one-amino-acid substitution at its carboxy terminus. We have shown that HDE1 is defective for minus-strand DNA synthesis, resulting in an overall reduction of viral DNA. HDE1 was also defective for plus-strand DNA synthesis, resulting in aberrant ratios of replication intermediates. Genetic complementation assays indicated that HDE1 replication proteins, C and P, are functional for replication and wild-type HHBV proteins do not rescue either defect. These findings indicate that the HDE1 substitution mutation acts primarily in cis. By restoring nucleotides 403 to 902 to the HHBV sequence, we showed that cis-acting sequences for plus-strand DNA synthesis are located in the 5' half of the HDE1 chimeric region. These data indicate the presence of one or more formerly unrecognized cis-acting sequences for DNA synthesis within the chimeric region (nucleotides 403 to 1364). These cis-acting sequences in the middle of the genome might interact directly or indirectly with known cis elements that are located near the ends of the genome. Our findings suggest that a specific higher-order template structure is involved in the mechanism of hepadnavirus DNA replication.  相似文献   

9.
10.
Encapsidation of the pregenomic RNA into nucleocapsids is a selective process which depends on specific RNA-protein interactions. The signal involved in the packaging of the hepatitis B virus (HBV) RNA pregenome was recently defined as a short sequence located near the 5' end of that molecule (Junker-Niepmann et al., EMBO J., in press), but it remained an open question which viral proteins are required. Using a genetic approach, we analyzed whether proteins derived from the HBV P gene play an important role in pregenome encapsidation. The results obtained with point mutations, deletions, and insertions scattered throughout the P gene clearly demonstrate that (i) a P gene product containing all functional domains is required both for the encapsidation of HBV pregenomic RNA and for packaging of nonviral RNAs fused to the HBV encapsidation signal, (ii) known enzymatic activities are not involved in the packaging reaction, suggesting that P protein is required as a structural component, and (iii) P protein acts primarily in cis, i.e., pregenomic RNAs from which P protein is synthesized are preferentially encapsidated.  相似文献   

11.
12.
Abraham TM  Loeb DD 《Journal of virology》2007,81(21):11577-11584
Previous analysis of hepatitis B virus (HBV) indicated base pairing between two cis-acting sequences, the 5' half of the upper stem of epsilon and phi, contributes to the synthesis of minus-strand DNA. Our goal was to identify other cis-acting sequences on the pregenomic RNA (pgRNA) involved in the synthesis of minus-strand DNA. We found that large portions of the pgRNA could be deleted or substituted without an appreciable decrease in the level of minus-strand DNA synthesized, indicating that most of the pgRNA is dispensable and that a specific size of the pgRNA is not required for this process. Our results indicated that the cis-acting sequences for the synthesis of minus-strand DNA are present near the 5' and 3' ends of the pgRNA. In addition, we found that the first-strand template switch could be directed to a new location when a 72-nucleotide (nt) fragment, which contained the cis-acting sequences present near the 3' end of the pgRNA, was introduced at that location. Within this 72-nt region, we uncovered two new cis-acting sequences, which flank the acceptor site. We show that one of these sequences, named omega and located 3' of the acceptor site, base pairs with phi to contribute to the synthesis of minus-strand DNA. Thus, base pairing between three cis-acting elements (5' half of the upper stem of epsilon, phi, and omega) are necessary for the synthesis of HBV minus-strand DNA. We propose that this topology of pgRNA facilitates first-strand template switch and/or the initiation of synthesis of minus-strand DNA.  相似文献   

13.
14.
15.
Regulatory sequences of duck hepatitis B virus C gene transcription   总被引:3,自引:3,他引:0       下载免费PDF全文
R Schneider  H Will 《Journal of virology》1991,65(11):5693-5701
  相似文献   

16.
S Perri  D Ganem 《Journal of virology》1996,70(10):6803-6809
The terminal regions of hepatitis B virus (HBV) pregenomic RNA (pgRNA) harbors sites governing many essential functions in the viral life cycle, including polyadenylation, translation, RNA encapsidation, and DNA synthesis. We have examined the binding of host proteins to a 170-nucleotide region from the 5' end of HBV pgRNA; a large portion of this region is duplicated at the 3' end of this terminally redundant RNA. By UV cross-linking labeled RNA to HepG2 cell extracts, we have identified a 65-kDa factor (p65) of nuclear origin which can specifically bind to this region. Two discrete binding sites were identified within this region; in vitro cross-competition experiments suggest that the same factor binds to both elements. One binding site (termed UBS) overlaps a portion of the highly conserved stem-loop structure (epsilon), while the other site (termed DBS) maps 35 nucleotides downstream of the hexanucleotide polyadenylation sequence. Both binding sites are highly pyrimidine rich and map to regions previously found to be important in the regulation of viral polyadenylation. However, functional analysis of mutant binding sites in vivo indicates that p65 is not involved in the polyadenylation of HBV pgRNA. Potential roles for the factor in viral replication in vivo are discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号