首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Electromyographic activity (EMG) from the musculus pectoralis (breast muscle), m. iliotibialis (thigh muscle) and m. gastrocnemius (leg muscle), cloacal temperature (Tb) and O2 consumption were measured in bantam cocks (Gallus domesticus) exposed to different ambient temperatures (Ta). The same parameters were measured in bantam hens incubating eggs artificially thermoregulated to 40° and 25°C (Te).EMG activity appeared in thigh and leg muscles at Ta below 32°C (Tsh). This temperature probably represents the thermoneutral temperature (TNT) of the cock. EMG activity in breast muscles appeared at Ta below 20°C, or 4°C below the lower critical temperature (Tc).All muscles were quiet when the hen incubated 40°C egg at Ta=Tsh. When Te was abruptly changed to 25°C, EMG activity in the iliotibialis muscle appared 3 min before the activity in the pectoralis muscle. Tb dropped from 41.2° to 40.6°C in 14 min. When Te was returned to 40°C, the EMG activity in the pectoralis muscle disappeared almost at once, while the iliotibialis muscle was active until Tb returned to normal.Aerobic muscles seem to be responsible for shivering thermogenesis between Tc and Tsh, while anaerobic muscles are recruited at lower Ta or when the heat loss during incubation becomes severe.Abbreviations EMG electromyography - Ta ambient temperature - Tb cloacal temperature - Tc lower critical temperature - Te egg temperature - TNT thermoneutral temperature - Tsh shivering threshold temperature  相似文献   

2.
Incubating birds transfer large amount of heat from the brood patch to the eggs during rewarming of cold eggs. If a vasoconstriction is present in the brood patch as in other parts of the body, it could possibly limit heat transfer to the eggs. To investigate this, heat transfer to water-circulated eggs was measured in incubating bantam hens (Gallus domesticus) and a black grouse hen (Lyrurus tetrix) during exposure to cold eggs. Egg temperature, egg surface temperature, heat production and cloacal temperature were also measured. At all levels of egg cooling, egg surface temperature and heat transfer to the eggs was stable throughout an exposure, except during resettling movements, which often changed egg surface temperature and the level of heart transfer. Egg surface temperature decreased linearly with egg temperature in both species, but was lower and more variable at low egg temperature in black grouse than in bantam hens. A higher proportion of the heat production was transferred to the eggs in the black grouse (corresponding to 109–118% of the increase above resting level) than previously reported in bantam hens. Clutch size did not affect this efficiency of heat transfer in black grouse. It is concluded that a vasoconstruction of the brood patch does not occur even under strong cold stress from the eggs. Heat transfer to the eggs is probably controlled more by behavioural adjustments than circulatory changes. An increase in brood patch blood flow probably occurs at relatively high egg temperature at the onset of egg rewarming. The efficiency of heat transfer, and thus the energetic cost of rewarming eggs, depends on the insulation of the bird and nest structure. The boreal/subarctic black grouse was able to reduce heat loss to the environment and transfer a higher proportion of its heat production to the eggs than the tropical bantam hen.Abbreviations AVAs arteriovenous anastomoses - HP heat production - HT heat transfer - T a ambient temperature - T b cloacal temperature - T brp brood patch temperature - T e egg temperature - T es egg surface temperature  相似文献   

3.
Oxygen consumption rates were measured in chicks (0–7 days of age), and in non-brooding and brooding adults. Brooded chicks maintained a constant oxygen consumption rate at a chamber ambient temperature of 10–35°C (0–5 days of age: 2.95ml O2·g-1·h-1 and 6–17 days of age: 5.80 ml O2·g-1·h-1) while unbrooded chicks increased oxygen consumption rate at ambient temperature below 30°C to double the brooded oxygen consumption rate at 25 and 15°C for chicks < 5 days of age and>5 days of age, respectively. The massspecific oxygen consumption rate of breeding male and females (non-brooding) were significantly elevated within the thermoneutral zone thermal neutral zone (28–35°C) in comparison to non-breeding adults. Below the thermal neutral zone, oxygen consumption rate was not significantly different. The elevation in oxygen consumption rate of breeding quail was not correlated with the presence of broodpatches, which developed only in females, but is a seasonal adjustment in metabolism. Male and females that actively brooded one to five chicks had significantly higher oxygen consumption rate than non-brooding quail at ambient temperature below 30°C. Brooding oxygen consumption rate was constant during day and night, indicating a temporary suppression of the circadian rhythm of metabolism. Brooding oxygen consumption rate increased significantly with brood number, but neither adult body mass nor adult sex were significant factors in the relationship between brooding oxygen consumption rate and ambient temperature. The proportion of daylight hours that chicks were brooded by parents was negatively correlated with ambient temperature. After chicks were 5 days old brooding time was reduced but brooding oxygen consumption rate was unchanged. Heat from the brooding parent appeared to originate mainly from the apteria under the wings and legs rather than the broodpatch. The parental heat contribution to chick temperature regulation below the chicks' thermal neutral zone is achieved by increasing parental thermal conductance by a feedback control similar to that suggested for the control of egg temperature via the brood-patch. It is concluded that the brooding period is an energetic burden to parent quail, and the magnitude of the cost increases directly with brood number and inversely with ambient temperature during this period. The oxygen consumption rate of brooding parents was 5.80–6.90 ml O2·g-1·h-1 (ambient temperature 10–15°C) at night and up to 5.10 ml O2·g-1·h-1 (ambient temperature 18°C) during the day, which are 100 and 40% higher than non-brooding birds, respectively.Abbreviations bm body mass - SMR standard metabolic rate - T a ambient temperature - T b body temperature - I/O2 oxygen consumption rate - C wet wet thermal conductance - TNZ thermal neutral zone - ANOVA analysis of variance - ANCOVA analysis of covariance  相似文献   

4.
Eight water monitor lizards, Varanus s. salvator, were captured; four individuals from an oil palm estate on the Malayan peninsula, and four from fresh water-deficient Tulai island 65 km off-shore in the South China Sea. They were fitted with a radio transmitter attached to a thermistor which was inserted into the cloaca of the animals and released. The heating rate during basking was measured as 0.117 and 0.118 °C·min-1 while the daily cloacal temperature fluctuated between 29.5–37.3 °C. Cloacal temperature was measured on other individuals caught at random times during the day, which revealed a considerable daily and individual variation. The average cloacal temperature during activity was 30.4 °C. The peak activity appeared when body temperature was 31 °C. Thermoregulation by behavioural means included cooling in water and reducing heat loss at night by sleeping in burrows. The cooling rate for two individuals when submerged in 29 °C water was 0.308 and 0.340 °C·min-1. There appeared to be a strong correlation between ambient temperature and cloacal temperature.Abbreviations bw body weight - T a ambient temperature - T a body temperature - T c cloacal temperature - TOP Timor Oil Palm Estate - TUL Tulai Island  相似文献   

5.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

6.
Summary The capacity for sustained, terrestrial locomotion in the cockroach. Blaberus discoidalis, was determined in relation to running speed, metabolic cost, aerobic capacity, and ambient temperature (T a=15, 23, and 34°C; acclimation temperature=24°C). Steady-state thoracic temperature (T tss) increased linearly with speed at each T a.The difference between T tss and T awas similar at each experimental temperature with a maximum increase of 7°C. Steady-state oxygen consumption (VO2ss) increased linearly with speed at each T aand had a low thermal dependence (Q10=1.0-1.4). The minimum cost of locomotion (the slope of the VO2ss versus speed function) was independent of T a.Cockroaches attained a maximal oxygen consumption (VO2max). increased with T afrom 2.1 ml O2·g-1·h-1 at 15°C to 4.9 ml O2·g-1·h-1 at 23°C, but showed no further increase at 34°C, VO2max increased 23-fold over resting VO2 at 23°C, 10-fold at 34°C, and 15-fold at 15°C. Endurance correlated with the speed at which VO2max was attained (MAS, maximal aerobic speed). Temperature affected the kinematics of locomotion. compared to cockroaches running at the same speed, but higher temperatures (23–34°C), low temperature (15°C) increased protraction time, reduced stride frequency, and reduced stability by increasing body pitching. The thermal independence of the minimum cost of locomotion (Cmin), the low thermal dependence of VO2ss (i.e., y-intercept of the VO2ss versus speed function), and a typical Q10 of 2.0 for VO2max combined to increase MAS and endurance in B. discoidalis when T awas increased from 15 to 23°C. Exerciserelated endothermy enabled running cockroaches to attain a greater VO2max, metabolic scope, and endurance capacity at 23°C than would be possible if T tss remained equal to T a. The MAS of B. discoidalis was similar to that of other arthropods that use trachea, but was 2-fold greater than ectotherms, such as salamanders, frogs, and crabs of a comparable body mass.Abbreviations T a ambient temperature - T t thoracic temperature - T tss steady state thoracic temperature during exercise - T trest thoracic temperature during rest - VO2 oxygen consumption - VO2rest oxygen consumption during rest - VO2ss steady-state oxygen consumption during exercise - VO2max maximal oxygen consumption; MAS maximum aerobic speed - C min minimum cost of locomotion - t end endurance time  相似文献   

7.
Thermoregulatory abilities, which may play a role in physiological adaptations, were compared between two field mouse species (Apodemus mystacinus and A. hermonensis) from Mount Hermon. While A. hermonensis is common at altitudes above 2100 m, A. mystacinus is common at 1650 m. The following variables were compared in mice acclimated to an ambient temperature of 24°C with a photoperiod of 12L:12D, body temperature during exposure to 4°C for 6 h, O2 consumption and body temperature at various ambient temperature, non-shivering thermogenesis measured as a response to a noradrenaline injection, and the daily rhythm of body temperature. Both species could regulate their body temperature at ambient temperatures between 6 and 34°C. The thermoneutral zone for A. mystacinus lies between 28 and 32°C, while for A. hermonensis a thermoneutral point is noted at 28°C. Both species increased O2 consumption and body temperature as a response to noradrenalin. However, maximal VO 2 consumption as an response to noradrenaline and non-shivering thermogenesis capacity were higher in A. mystacinus, even though A. hermonensis is half the size of A. mystacinus. The body temperature rhythm in A. hermonensis has a clear daily pattern, while A. mystacinus can be considered arhythmic. The results suggest that A. hermonensis is adapted to its environment by an increase in resting metabolic rate but also depends on behavioural thermoregulation. A. mystacinus depends more on an increased non-shivering thermogenesis capacity.Abbreviations C thermal conductance - NA noradrenaline - NST non-shivering thermogenesis - OTC overall thermal conductance - RMR resting metabolic rate - STPD standard temperature and pressure dry - T a ambient temperature - T b body temperature - I b Min minimal T b , measured before NA iniection - T b NA maximal - T b as a response to NA injection - T lc lower critical point - TNP thermoneutral point - TNZ thermoneutral zone - VO2 O2 consumption - VO2 Min minimal VO2 measured before NA injection - VO2NA maximal VO2, as a response to NA injection  相似文献   

8.
Summary Lacerta viridis maintained under natural photoperiodic conditions show daily and seasonal changes in metabolic rates and body temperature (T b) as well as seasonal differences in sensitivity to temperature change. At all times of the year lizards have a daily fluctuation in oxygen consumption, with higher metabolic rates during the light phase of the day when tested at a constant ambient temperature (T a) of 30°C. Rhythmicity of metabolic rate persists under constant darkness, but there is a decrease in the amplitude of the rhythm.Oxygen consumption measured at various Tas shows significant seasonal differences at T as above 20°C. Expressed as the Arrhenius activation energy, metabolic sensitivity of Lacerta viridis shows temperature dependence in autumn, which changes to metabolic temperature independence in spring at T as above 20°C. The results indicate a synergic relationship between changing photoperiod and body temperature selection, resulting in seasonal metabolic adjustment and seasonal adaptation.Abbreviations ANOVA analysis of variance - LD long day (16 h light) - SD short day (8 h light) - T a ambient temperature - T b body temperature  相似文献   

9.
1.  Physiological adaptation to hypothermia were studied in newly hatched great snipe chicks (Gallinago media) by measuring oxygen uptake (VO2), heart rate (HR), respiratory frequency (RF), and body temperature (Tb) at different ambient temperatures (Ta).
2.  Tb of 1-day-old chicks at Ta of 35°C stabilized at about 40°C. At Ta between 20 and 30°C the chicks maintained a Tb about 8°C above Ta. Hatchlings maintained a higher gradient when active than when resting. Below 20°C they were unable to maintain a stable Tb.
3.  In resting hatchlings VO2 was similar at Ta between 35 and 20°C (Tb 40–30°C), VO2 range 1.7–2.5 ml·g-1·h-1. Below 20°C, VO2 declined with time.
4.  The HR of 1-day-old chicks fell linearly with Tb during cooling. The Q10 of the HR was 1.7 at Tb 38°C and increased to 3.0 at 29°C. The RF showed a slight tendency to decrease with decreasing Tb.
5.  It is concluded that the ability to maintain normal dexterity at low Tb is an important aspect of snipe survival strategy. Maintaining a temperature gradient rather than a constant high Tb presumably saves energy. It is suggested that the mechanisms whereby VO2 is maintained at a low Tb may involve isoenzymes and adaptations of the nervous system. However, such adaptations would not seem to affect the pacemaker mechanism as evidenced by the high Q10 of the HR.
  相似文献   

10.
Ventilation was studied in the emu, a large flightless bird of mass 40kg, within the range of ambient temperatures from-5 to 45°C. Data for the emu and 21 other species were used to calculate allometric relationships for resting ventilatory parameters in birds (breath frequency=13.5 mass-0.314; tidal volume=20.7 mass1.0). At low ambient temperatures the ventilatory system must accommodate the increased metabolic demand for oxygen. In the emu this was achieved by a combination of increased tidal volume and increased oxygen extraction. Data from emus sitting and standing at-5°C, when metabolism is 1.5x and 2.6x basal metabolic rate, respectively, indicate that at least in the emu an increase in oxygen extraction can be stimulated by low temperature independent of oxygen demand. At higher ambient temperatures ventilation was increased to facilitate respiratory water loss. The emu achieved this by increased respiratory frequency. At moderate heat loads (30–35°C) tidal volume fell. This is usually interpreted as a mechanism whereby respiratory water loss can be increased without increasing parabronchial ventilation. At 45°C tidal volume increased; however, past studies have shown that CO2 washout is minimal under these conditions. The mechanism whereby this is possible is discussed.Abbreviations BMR basal metabolic rate - BTPS body temperature, ambient pressure, saturated - EO 2 oxygen extraction - EWL evaporative water loss - f R ventilation frequency - RH relative humidity - RHL respiratory heat loss - SEM standard error of the mean - SNK student-Newman-Keuls multiple range test - STPD standard temperature and pressure, dry - T a ambient temperatures(s) - T b body temperature(s) - T ex expired air temperature(s) - T rh chamber excurrent air temperature - V J ventilation - VO2 oxygen consumption - V T tidal volume - V/Q air ventilation to blood perfusion ratio  相似文献   

11.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

12.
The emu is a large, flightless bird native to Australia. Its habitats range from the high snow country to the arid interior of the continent. Our experiments show that the emu maintains a constant body temperature within the ambient temperature range-5 to 45°C. The males regulate their body temperature about 0.5°C lower than the females. With falling ambient temperature the emu regulates its body temperature initially by reducing conductance and then by increasing heat production. At-5°C the cost of maintaining thermal balance is 2.6 times basal metabolic rate. By sitting down and reducing heat loss from the legs the cost of homeothermy at-5°C is reduced to 1.5 times basal metabolic rate. At high ambient temperatures the emu utilises cutaneous evaporative water loss in addition to panting. At 45°C evaporation is equal to 160% of heat production. Panting accounts for 70% of total evaporation at 45°C. The cost of utilising cutaneous evaporation for the other 30% appears to be an increase in dry conductance.Abbreviations A r Effective radiating surface area - BMR basal metabolic rate - C dry dry conductance - CEWL cutaneous evaporative water loss - EHL evaporative heat loss - EWL evaporative water loss - FECO2 fractional concentration of CO2 in excurrent air - FFH2O water content of chamber excurrent air - FEO2 fractional concentration of O2 in chamber excurrent air - FICO2 fractional concentration of CO2 in incurrent air - FIO2 fractional concentration of O2 in chamber incurrent air - MHP metabolic heat production - MR metabolic rate - REWL respiratory evaporative water loss - RH relative humidity - RQ respiratory quotient ; - SA surface area - SEM standard error of the mean - SNK Student-Newman-Keuls multiple range test - STPD standard temperature and pressure dry - T a ambient temperature(s) - T b body temperature(s) - T e surface temperature(s) - flow rate of air into the chamber - carbon dioxide production - oxygen consumption - vapour pressure of water  相似文献   

13.
Summary Stubble quail and King quail are both native to Australia although Stubble quail extend into more arid environments than do King quail. In this study, the responses of body temperature (T b), heart rate (f h), respiration rate (f r) and rates of gular flutter (f g) were measured in response to ambient temperatures (T a) ranging from 20 °C to 50 °C. Both species exhibited hyperthermia atT a in excess of 38–39 °C although both species maintainedT b lower thanT a atT a above 42 °C. Respiration rate remained relatively constant until the onset of panting, just prior to the commencement of gular flutter. The onset of panting and gular flutter in both species was relatively sudden and occurred at a meanT a of 38.1 °C for Stubble quail (meanT b of 42.5 °C) and a significantly higherT a of 40.9 °C but similar meanT b of 42.1 °C for King quail. Gular flutter appeared to occur synchronously with respiration and showed some tendency to increase withT b. The percentage of time spent in gular flutter showed a direct increase withT b. Heart rate tended to decrease with increasingT a in King quail while remaining relatively constant in Stubble quail. However, the relationship was not consistent and a great deal of variability existed between individuals. The two species are similar in their responses to heat stress and in general these responses do not reflect their different natural habitats.Symbols f h heart rate - f r respiratory rate - f g rate of gular fluttering  相似文献   

14.
Eggs with pip-holes of the black-footed (Diomedea nigripes) and Laysan (Diomedea immutabilis) albatrosses were exposed to various air temperatures in the range 20–35°C in order to detect signs of incipient endothermy in late embryos. No evidence of endothermy was found. In contrast, the O2 consumption of most hatchlings increased in response to cooling, the O2 consumption at an air temperature of 25° C exceeding that between 34 and 35°C by 40%. In a minority of hatchlings this response was not seen. It was suggested that endothermy may develop at some time during the 24 h after hatching.Abbreviations bm body mass - C total total thermal conductance of tissues and plumage - f respiratory frequency - FEO 2 fractional concentration of oxygen in air leaving chamber - FIO 2 fractional concentration of oxygen in air entering chamber - T a an temperature - T b deep-body temperature - V air-flow rate - VO2 oxygen consumption  相似文献   

15.
Honeybees were trained to visit artificial feeding sites containing a 2 mol·1-1 sucrose solution. To reach the feeder they either had to walk through 3 m of Teflon tube, or fly 20 m or 65 m and then walk through 3 m of tube. Only individuals that flew at least 65 m performed waggle dances. The distance indicated in these waggle dances, judged by the number of wagging movements per wagrun, was the same regardless of whether individuals had to run an additional 3 m of tube after flight or not. The energy needed during walking after flight was determined by measuring O2 consumption. All individuals attempted to regulate their body temperatures between 36 and 42°C during walking and feeding (O2 consumption=40l·min-1 per bee). Calculations show that this walking through 3 m of tube requires as much energy as flying 128 m (difference between thoracic and ambient temperature=15°C). This energy expenditure was not reflected in the dances. The results do not support the hypothesis that honeybees estimate feeding site distances by measuring the energy required to reach a feeder.Abbreviations Ta ambient temperature - T b body temperature - T th thorax temperature  相似文献   

16.
M. A. Chappell 《Oecologia》1981,49(3):397-403
Summary Body temperatures (T b) and daily activity patterns of free-living arctic ground squirrells (Spermophilus undulatus) were determined via telemetry at a field site in northern Alaska. Simultaneous measurements were made of ambient temperature (T a), wind speed (V), and incident solar radiation. The operative environmental temperature (T e) for ground squirrels was obtained from fur-covered, thin metal taxidermic models of the animals. Standard operative temperature (T es), a comparative index of heat flow, was calculated from T e, V, and laboratory measurements of thermal conductivity.During the period of the study (August), S. undulatus were active for about 14 h per day (06.00 to 20.00 h). T b was high throughout the daily cycle, averaging 38–39°C. Circadian variations in T b were slight; average T b values dropped <1°C at night. Daytime T b fluctuations were not closely correlated to activity or to changes in environmental conditions. Air temperatures during the study were low, usually between 10 and 15°C during the day. However, T es in exposed areas was normally higher, even though skies were generally overcast. During periods of sunshine, T es may be as high as 34°C. The absence of nocturnal activity may result from increased costs of thermoregulation at night, which sharply reduces foraging efficiency. The high and stable body temperatures of S. undulatus probably result from thermoneutral daytime T es, low activity levels, and the use of well-insulated nests.  相似文献   

17.
Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V.O2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V.O2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V.O2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V.O2 at higher Ta (36 °C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V.O2. No relationship was found between the magnitudes of decreases in Tb and V.O2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V.O2 was unchanged.  相似文献   

18.
Summary Instantaneous oxygen consumption, muscle potential frequency, thoracic and ambient temperature were simultaneously measured during heating in individual workers and drones of honey bees. Relationships between these parameters and effects of thoracic temperature on power input and temperature elevation were studied. Oxygen consumption increased above basal levels only when flight muscles became active. Increasing muscle potential frequencies correlated with elevated oxygen consumption and raised thoracic temperature. The difference between thoracic and ambient temperature and oxygen consumption were linearly related. Oxygen consumption per muscle potential (l O2 · g –1 thorax · MP–1) was two-fold higher in drones than in workers. However, oxygen consumption for heating the thorax (l O2 · g –1 thorax · (Tth-Ta) · °C–1) was nearly the same in workers and drones. Thoracic temperature affected the amount of oxygen consumed per muscle potential (R10=1.5). Achieved temperature elevation per 100 MP was more temperature sensitive in drones (R10=6–10) than in workers (R10=3.6). Q10 values for oxygen consumption were 3 in workers and 4.5–6 in drones. Muscle potential frequency decreased with a Q10=1.8 in workers and 2.7 in drones. Heating behaviour of workers and drones was different. Drones generated heat less continuously than workers, and showed greater interindividual variability in predilection to heat. However, the maximal difference between ambient and thoracic temperature observed was 22 °C in drones and 14 °C in workers, indicating greater potential for drones.Abbreviations DL dorsal-longitudinal muscle - DV dorsoventral muscle - MP muscle potential - T a ambient temperature - T th thoracic temperature  相似文献   

19.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

20.
The oxygen consumption of European finches, the siskin (Carduelis spinus), the brambling (Fringilla montifringilla), the bullfinch (Pyrhulla pyrhulla), the greenfinch (Carduelis chloris) and the hawfinch (Coccothraustes coccothraustes), was recorded continuously while ambient temperature was decreased stepwise from +30 down to-75°C. The oxygen consumption, body temperature (telemetrically), and shivering (integrated pectoral electromyography) of greenfinches were measured simultaneously at ambient temperatures between +30 and-75°C. Maximum heat production, cold limit, lower critical temperature, basal metabolic rate and thermal conductance (of the greenfinch) were determined. The diurnal variation of oxygen consumption of siskins and greenfinches was recorded at thermoneutrality and below the thermoneutral zone in winter- and summer-acclimatized birds. The diurnal variation of body temperature and thermal conductance of greenfinches were also determined. The diurnal variation of heat production was not seasonal or temperature dependent in the siskin and in the greenfinch. Nocturnal reduction of oxygen consumption saved 15–33% energy in the siskin and greenfinch. Body temperature of the greenfinch was lowered by 2.5–3.4°C. The nocturnal reduction of thermal conductance in the greenfinch was 39–48%. The basal metabolic rate was lowest in the largest bird (hawfinch) and highest in the smallest bird (siskin). The values were in the expected range. The heat production capacity of finches in winter was 4.7 times basal metabolic rate in the siskin, 4.2 times in the brambling, 3.5 times in the greenfinch and 2.9 times in the bullfinch and hawfinch. The heat production capacity of the siskin and greenfinch was not significantly lower in summer. The cold limit temperatures (°C) in winter were-61.2 in the siskin,-41.3 in the greenfinch,-37.0 in the bullfinch,-35.7 in the brambling and-28.9 in the hawfinch. The cold limit was 14.3°C higher in summer than in winter in the siskin and 8.7°C in the greenfinch. Thermal insulation of the greenfinch was significantly better in winter than in summer. The shivering of the greenfinch increased linearly when ambient temperature was decreased down to-40°C. Maintenance of shivering was coincident with season. In severe cold integrated pectoral electromyography did not correlate with oxygen consumption as expected. The possible existence of non-shivering thermogenesis in birds is discussed. It is concluded that the acclimatization of European finches is primarily metabolic and only secondly affected by insulation.Abbreviations AAT avian adipose tissue - bm body mass - BMR basal metabolic rate - C t thermal conductance - EMG electromyogram - HP heat production - HP max maximum heat production - MR metabolic rate - NST non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - T a ambient temperature - T b body temperature - T c colonic temperature - T 1c lower critical temperature - TNZ thermoneutral zone - T st shivering threshold temperature - V oxygen consumption  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号