首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To rapidly detect specific genes, crude extracts prepared from rice seed grains were used as templates for PCR, the PCR products were digested with restriction enzymes or urasil-DNA glycosylase, and then matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) was used to detect amplified DNA. It was possible to amplify small DNA fragments (50–60 bp), but not large ones (>200 bp), using crude extracts as the PCR template. This method can be completed within 1 h, including extractions, and is well suited to automation for high-throughput analyses.  相似文献   

2.
Progress in understanding the biosynthetic pathway of the cyclotides has been hampered as this unique family of cyclic plant peptides are notoriously difficult to analyse by standard proteomic approaches such as gel electrophoresis. We have developed a simple, rapid and robust strategy for the quantification of cyclotides in crude plant extracts using MALDI-TOF MS making use of generic peptides similar in mass to the analyte as internal standards for calibration. Linearity (r(2)>0.99) over two orders of magnitude (down to femtomole levels) was achieved in plant extracts, allowing quantitative analysis of transgenic and endogenous peptide expression.  相似文献   

3.
The use of plants as production hosts for recombinant glycoproteins, which is rapidly developing, requires methods for fast and reliable analysis of plant N-linked glycans. This study describes a simple small-scale method for the preparation of N-linked glycans from soluble plant protein and analysis thereof by matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Concentration and protease digestion of plant protein as well as deglycosylation is carried out in a single concentrator unit without the need for intermittent purification to minimize adsorptive loss and to facilitate handling. Plant protein is concentrated in a unit with a 5 kDa cutoff, and after buffer exchange, pepsin (EC 3.4.23.1) digestion is carried out in the concentrator overnight to obtain peptides as substrates for deglycosylation. Deglycosylation is carried out with peptide-N-glycosidase A (PNGase A; EC 3.5.1.52) for 24 h. Released N-glycans are purified using reverse-phase and cation exchange chromatography micro-columns for removal of peptides and desalting. N-Glycans are directly analyzed by MALDI-TOF MS without derivatization. The method for isolation of N-glycans is compatible with secreted proteins from cell culture supernatant as well as with soluble protein extracts from leaf tissue. As little as 5 μg of plant glycoprotein is sufficient for N-glycan preparation for MALDI-TOF MS analysis using this method.  相似文献   

4.
Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods—(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe—were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, α-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.  相似文献   

5.
Summary Tissue browning that frequently results in the early death of bamboo shoots in vitro correlated directly with polyphenol oxidase (PPO, EC 1.10.3.1) activity and inversely with titratable acidity. It was unrelated to the level of endogenous phenols. During the course of culture, timing of PPO activity paralleled that of explant browning. Browning was highest among shoots cultured in a medium of pH 8, which was consistent with the pH optinum of the bamboo enzyme. The pH optimum was first determined with the crude enzyme, then verified with two purified isozymes. Stability of the bamboo PPO was also highest at pH 10. PPO activities of the severely browning Dendrocalamus latiflorus, the moderately browning Phyllostachys nigra, and the relatively non-browning Bambusa oldhamii were inhibited strongly by ascorbic acid, cysteine, sodium diethyldithiocarbamate, and sodium sulfite. But characterization of bamboo PPO according to enzyme inhibitors was not possible because enzyme extracts of the three species gave varied responses to the traditional substances. Nutrient medium addenda of some PPO inhibitors, namely ascorbic acid, cysteine, kojic acid, and thiourea, mainly enhanced browning. However, ferulic acid at 3 mM and lower concentrations reduced the number of brown shoots per culture, although not the percentage of cultures that browned. Polyvinylpyrrolidone failed completely to suppress browning. The two purified isozymes showed different temperature optima for PPO activity: 60°C and 65°C. The purified isozymes displayed a substrate preference for dopamine, or a cathecol oxidase characteristics.  相似文献   

6.
A real-time PCR procedure targeting the gene of the molecular cochaperon DnaJ (dnaJ) was developed for specific detection of strains belonging to the Enterobacter cloacae group. The inclusivity and exclusivity of the real-time PCR assay were assessed with seven reference strains of E.?cloacae, 12 other Enterobacter species and 41 non-Enterobacter strains. Inclusivity as well as exclusivity of the duplex real-time PCR was 100%. In contrast, resolution of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was inadequate for delineation of Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei and Enterobacter ludwigii from E.?cloacae. Eleven of 56 (20%) clinical isolates of the E.?cloacae group could not be clearly identified as a certain species using MALDI-TOF MS. In summary, the combination of MALDI-TOF MS with the E.?cloacae-specific duplex real-time PCR is an appropriate method for identification of the six species of the E.?cloacae complex.  相似文献   

7.
Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.  相似文献   

8.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

9.
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of triacylglycerides (TAG) directly from chloroform extracts of biological samples. Previous attempts at direct TAG quantitation by positive-ion electrospray ionization mass spectrometry (ESI/MS) were confounded by the presence of overlapping peaks from choline glycerophospholipids requiring chromatographic separation of lipid extracts prior to ESI/MS analyses. By exploiting the rapid loss of phosphocholine from choline glycerophospholipids, in conjunction with neutral-loss scanning for individual fatty acids, overlapping peaks in the ESI mass spectrum were deconvoluted generating a detailed molecular species fingerprint of individual TAG molecular species directly from chloroform extracts of biological samples. This method readily detects as little as 0.1 pmol of each TAG molecular species from chloroform extracts and is linear over a 1000-fold dynamic range. The sensitivity of individual TAG molecular species to ESI/MS/MS analyses correlated with the unsaturation index and inversely correlated with total aliphatic chain length of TAG. An algorithm was developed which identifies sensitivity factors, thereby allowing the rapid quantitation and molecular species fingerprinting of TAG molecular species directly from chloroform extracts of biological samples.  相似文献   

10.
The utilization of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analytical detection and quantification of phosphoinositides and other lipids in lipid extracts from biological samples was explored. Since phosphatidylcholine species in crude extracts have been shown to cause ion suppression of the MS signals for other lipids, a minicolumn of a silica gel cation exchanger was used to adsorb the cationic lipids including the phosphatidylcholine species from the chloroform phase of fetal and adult murine brain extracts. In positive ion mode, lipid peaks that had been completely suppressed in the crude extract became readily detectable and quantifiable in the flow-through fraction from the column. In negative ion mode, improved sensitivity made it possible to readily detect and measure phosphatidylinositol-4,5-bisphosphate (PIP(2)) which had been only marginally detectable before the fractionation. By incorporating an internal standard into the samples, the relative MALDI-TOF MS signals obtained for increasing concentrations of mammalian phosphatidylinositol (PtdIns) increased linearly with correlation coefficients >0.95. Using strong cation exchange minicolumn treated extracts, the levels of PtdIns and PIP(2) in adult and fetal murine brains were measured and compared. The removal of cationic lipids from the chloroform-methanol murine brain extracts resulted in improved overall detection of neutral and anionic lipids and quantification of phosphoinositides by MALDI-TOF MS.  相似文献   

11.
The effects of heat shock on PPO and POD activity in minimally processed Iceberg lettuce was examined during storage (10 days). The results were compared with the effect of temperature on crude extracts of these enzymes (in vitro analysis). Fresh-cut lettuce washed at 50 degrees C showed significantly lower PPO and POD activity throughout storage than lettuce washed at 4 degrees C and 25 degrees C. These results were consistent with a sensory analysis in which the panellists found the lowest browning scores in those samples treated at 50 degrees C.When PPO and POD were analysed in vitro, the samples treated at 50 degrees C showed a rapid loss of POD activity and a similar but slower loss of PPO activity in all tissues, while incubation at 4 degrees C and 25 degrees C showed no significant loss of activity. While heat shock did not lead to significant loss of activity it did repress the synthesis of PPO and POD during storage.  相似文献   

12.
运用丙酮浸漬干燥、磷酸盐缓冲液提取、低温离心、硫酸铵沉淀、DEAE-Sephadex(A-50)、Sephadex(G-75) 和DEAE-celluse(DE-52)层析等方法从苹果中分离获得一种新的含铜酶蛋白,该酶被命名为多酚氧化酶Ⅱ(polyphenol oxidase Ⅱ, PPOⅡ),纯化倍数是215,纯化收率是23%.PAGE、SDS-PAGE和MALDI-TOF 等技术用于测定所获的酶的纯度和分子量.在PAGE和SDS-PAGE 均显示一条带,表明PPOⅡ只由一个亚基组成,且已达到单一组分(MALDI-TOF的结果更证实了这一点).SDS-PAGE 和 MALDI-TOF 的结果都表明PPO的分子量为 38204 Da.pH值对酶活性和稳定性研究的结果显示,从pH值4.0~7.0随着pH值的增加,酶活性也不断增加;从pH值 7.0~11.0, 酶活性不断降低.PPOⅡ的最适pH值为6.6最适温度为30℃.  相似文献   

13.
Although modern MS has facilitated the advent of metabolomics, some natural products such as carotenoids are not readily compatible to detection by MS. In the present article, we describe how matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) can be utilized to acquire mass spectra of carotenoids effectively. The procedure is sensitive (pmole range), reduces 'spot to spot' variation and provides high mass accuracy, thus aiding identification. The technique has been applied in vivo to the analysis of carotenoids in isolated plant cells and in vitro to three applications: (i) to show compatibility with purification methods such as LC, TLC and HPLC; (ii) for the rapid identification and quantification (by isotope dilution) of carotenoids present in crude extracts from plant tissues and whole cells; (iii) simultaneous semi-quantitative determination of carotenoids metabolites (m/z values) in crude plant extracts. Multivariate analysis of the recorded m/z values shows the effectiveness of the procedure in distinguishing genotypes from each other. In addition, the utility of the technique has been demonstrated on two mutant tomato populations, to determine alterations in carotenoid content, and a comparison made with traditional HPLC-photodiode array analysis. These data show that MALDI/TOF-MS can be used to rapidly profile, identify and quantify plant carotenoids reproducibly, as well as detecting other metabolites (m/z) in complex biological systems.  相似文献   

14.
Niemann-Pick disease types A and C, and Gaucher disease are glycolipid storage disorders characterized by the systemic deposition of glycosphingolipids, i.e., sphingomyelin in Niemann-Pick disease types A and C tissues and glucosylceramide in Gaucher disease ones, respectively. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS), we analyzed the sphingolipids in liver and spleen specimens from patients with Niemann-Pick disease types A and C, and Gaucher disease. Crude lipids were extracted from tissue containing 5mg protein with chloroform and methanol. After mild alkaline treatment of the crude lipids, a sphingolipid fraction was prepared and analyzed by MALDI-TOF/MS. The results were as follows: (a) ion peaks with m/z values corresponding to different sphingomyelin and ceramide monohexoside (CMH) species were clearly detected. (b) With sphingosylphosphorylcholine as the internal standard for quantification of sphingomyelin and CMH, the relative peak heights of sphingomyelin and CMH were calculated and plotted versus their contents. The relative peak heights of sphingomyelin and CMH showed linearity between 50 and 1500 ng sphingomyelin content, and between 5 and 150 ng CMH content, respectively. (c) Quantitative analysis revealed the accumulation of sphingomyelin in the liver and spleen specimens from the patients with Niemann-Pick disease types A and C. Striking accumulation of CMH was also detected in the liver and spleen specimens from the patients with Gaucher disease. This investigation indicated that accumulated sphingomyelin and CMH in small amounts of tissues from sphingolipidosis patients can be detected quantatively with the MALDI-TOF/MS method. This method will be useful not only for the diagnosis but also for biochemical pathophysiology evaluation of patients with various sphingolipidosis.  相似文献   

15.
高温强光胁迫对苹果果皮PPO活性的影响   总被引:3,自引:0,他引:3  
苹果果实日烧是一种普遍发生的生理病害,最常见的特征之一就是在果实表面出现褐变。通常认为PPO与植物的酶促褐变密切相关。研究了自然和控制条件下,高温强光胁迫对果实PPO活性的影响,以便揭示高温强光胁迫下苹果果实褐变与PPO活性之间的联系。结果表明:高温和强光胁迫与果皮PPO活性变化密切相关。就树冠不同方位而言,西南方位是高温和强光胁迫最严重的区域,其外围裸露果实的PPO活性也最强。在一定范围内,随着处理温度和光照强度的升高,果皮PPO活性也逐渐增强。短时间剧烈升温能够引起PPO活性骤然上升。在同样程度的高温胁迫下,提高环境湿度有利于抑制果皮PPO活性,从而减轻褐变症状的发生。室内外试验一致证实:果实日烧褐变现象与高温强光胁迫下果皮组织PPO活性大幅度提高有直接关系。  相似文献   

16.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has recently become an effective instrument for rapid microbiological diagnostics and in particular for identification of micro-organisms directly in a positive blood culture. The aim of the study was to evaluate a collection of 82 stored yeast isolates from bloodstream infection, by MALDI-TOF MS; 21 isolates were identified also directly from positive blood cultures and in the presence of other co-infecting micro-organisms. Of the 82 isolates grown on plates, 64 (76%) were correctly identified by the Vitek II system and 82 (100%) by MALDI-TOF MS; when the two methods gave different results, the isolate was identified by PCR. MALDI-TOF MS was unreliable in identifying two isolates (Candida glabrata and Candida parapsilosis) directly from blood culture; however, direct analysis from positive blood culture samples was fast and effective for the identification of yeast, which is of great importance for early and adequate treatment.  相似文献   

17.
The conditions for extracting polyphenol oxidase (PPO, monophenol monooxygenase, EC 1.14.18.1) from d'Anjou pears have been studied. Water extracts of pear PPO contained artefacts which were present as additional bands on polyacrylamide-gel electrophoresis. Buffer extracts of an acetone powder did not remove sufficient endogenous phenolics to prevent browning of the extract. The following phenolic absorbents, arranged in order of increasing efficiency, reduced the formation of artefacts in extracts of PPO: PVPP, Amberlite XAD-4, Bio-Rad AG 1-X8, and Bio-Rad AG 2-X8. Greatest activity was extracted within a pH range of 5.6–5.9. Anion exchange resins were particularly effective in removing phenolics. XAD-4, AG 1-X8, or AG 2-X8 did not adsorb PPO and reduced the electrophoretically separable bands of PPO activity from 11 in water extracts to 3. The properties of the crude PPO were also studied.  相似文献   

18.
By using shotgun lipidomics based on the separation of lipid classes in the electrospray ion source (intrasource separation) and two-dimensional (2D) MS techniques (Han, X., and R. W. Gross. 2004. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. First published on June 18, 2004; doi: 10.1002/mas.20023, In press), individual molecular species of most major and many minor lipid classes can be quantitated directly from biological lipid extracts. Herein, we extended shotgun lipidomics to the characterization and quantitation of cerebroside molecular species in biological samples. By exploiting the differential fragmentation patterns of chlorine adducts using electrospray ionization (ESI) tandem mass spectrometry, hydroxy and nonhydroxy cerebroside species are readily identified. The hexose (either galactose or glucose) moiety of a cerebroside species can be distinguished by examination of the peak intensity ratio of its product ions at m/z 179 and 89 (i.e., 0.74 +/- 0.10 and 4.8 +/- 0.7 for galactose- and glucose-containing cerebroside species, respectively). Quantitation of cerebroside molecular species (as little as 10 fmol) from chloroform extracts of brain tissue samples was directly conducted by 2D ESI/MS after correction for differences in (13)C-isotopomer intensities. This method was demonstrated to have a greater than 1,000-fold linear dynamic range in the low concentration region; therefore, it should have a wide range of applications in studies of the cellular sphingolipid lipidome.  相似文献   

19.
Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry.  相似文献   

20.
The analysis of beef lipids is normally based on chromatographic techniques and/or gas chromatography in combination with mass spectrometry (GC/MS). Modern techniques of soft-ionization MS were so far scarcely used to investigate the intact lipids in muscle tissues of beef. The objective of the study was to investigate whether matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry and 31P nuclear magnetic resonance (NMR) spectroscopy are useful tools to study the intact lipid composition of beef. For the MALDI-TOF MS and 31P NMR investigations muscle samples were selected from a feeding experiment with German Simmental bulls fed different diets. Beside the triacylglycerols (TAGs), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylinositol (PI) species the MALDI-TOF mass spectra of total muscle lipids gave also intense signals of cardiolipin (CL) species.The application of different matrix compounds, 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), leads to completely different mass spectra: 9-AA is particularly useful for the detection of (polar) phospholipids, whereas apolar lipids, such as cholesterol and triacylglycerols, are exclusively detected if DHB is used. Finally, the quality of the negative ion mass spectra is much higher if 9-AA is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号