首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two major isoforms of juvenile hormone (JH) esterase isolated from Trichoplusia ni were fragmented by cyanogen bromide and trypsin digestion. The resulting CNBr or CNBr/trypsin fragments were characterized and compared biochemically by SDS-PAGE, isoelectric focusing, two-dimensional electrophoresis and HPLC. Similar and unique fragments were examined for sequence, antigenic determinants and carbohydrate moieties. The studies identified small regions of the proteins which possess either potentially different sequences or different post-translational modifications. The location of a glycosylated asparagine residue was determined, as well as a region containing an epitope probably composed of a linear sequence of residues. An N-terminal region was identified that contained charge variation between the two isoforms and the sequence was obtained for the only unique CNBr/trypsin fragment detected from that region. These are the first data on mapping of regions of charge variation, epitope location and glycosylation sites for this enzyme from any insect species.  相似文献   

2.
Juvenile hormone esterase (JHE), a selective enzyme that hydrolyzes the methyl ester of insect juvenile hormone plays an important role in regulating metamorphosis in nymphs as well as reproduction in adults. Studies on JH degradation provide insight into the possibilities of physiological disruption in the insects. In the present study, the JH degrading enzyme, JHE from the cotton pest Dysdercus cingulatus (Heteroptera) is characterized. Electrophoretic analysis of haemolymph during various developmental stages showed the JHE bands prominent only on the final day of 5th instar nymph, and the esterase substrate specificity confirmed the presence of JHE isoforms. In an attempt to clone cDNA of JHE gene from the final instar nymphs, mRNA isolated from fat bodies was coupled with JHE gene-specific primers and the cDNA was synthesized using RT-PCR. The PCR amplified cDNA showed the presence of JHE isoforms in D. cingulatus.  相似文献   

3.
Juvenile hormone esterase (JHE) is a selective enzyme that hydrolyzes the methyl ester of juvenile hormone. This enzyme plays an important role in the regulation of metamorphosis in caterpillars, and is implicated in additional roles in development and reproduction in this and other orders of insect. The full length coding region of the JHE cDNA from Manduca sexta was subcloned into the baculovirus AcMNPV genome under the control of the p10 promoter. The recombinant virus demonstrated the expression of high levels of JHE activity when infected into Hi5 cells from Trichoplusia ni. The recombinant protein was partially purified by anion exchange chromatography and its biochemical characterization showed similar features to the wild type protein. The recombinant JHE has an estimated MW of 66500 Da. Some heterogeneity with the enzyme was observed when analyzed by isoelectric focusing, although the peak of JHE activity was observed at pI=6.0. It is highly sensitive to trifluoroketone inhibitors and certain phosphoramidothiolates, while relatively insensitive to other common esterase inhibitors. Incubating the enzyme with various organic solvents and detergents showed that the enzyme is activated at lower concentrations of solvents/detergents and remains significantly active even at high concentrations. The high tolerance of organic solvents may make this JHE enzyme useful in future applications as a synthetic catalyst.  相似文献   

4.
In the Colorado potato beetle (Leptinotarsa decemlineata), low juvenile hormone (JH) titers are necessary to initiate metamorphosis and diapause. Low JH titers coincide with high activities of JH esterase, which occur mainly in the hemolymph. The specific activity of JH esterase appeared to be highest in the last larval instar, at day 3 after the molt, and reached a value of 13.5 nmol/min/mg. JH esterase was purified from hemolymph collected at this stage by a sequence of separation systems, including preparative nondenaturing PAGE, isoelectric focusing, and SDS-PAGE. The enzyme had a molecular weight of 120,000 and was composed of two subunits with molecular weights of 57,000, which were not linked by disulphide bridges. Isoelectric focusing revealed two forms of the enzyme with isoelectric points of 5.5 and 5.6. The Km and kcat of the purified enzyme were determined. The major form with pI 5.6 had a Km of 1.4 × 10-6M and a kcat of 0.9 s-1 and the minor form with pI 5.5 had a Km of 2.2 × 10-6M and a kcat of 1.9 s-1. The quaternary structure of L. decemlineata JH esterase as a dimer, differs from JH esterases in other species, which are monomers. Arch. Insect Biochem. Physiol. 35:261-277, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

7.
Juvenile hormone (JH) esterase was purified greater than 1000-fold in one step from hemolymph and whole larval homogenates from the last larval instar of Trichoplusia ni to give a single diffuse band that migrates at Mr = 64,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification was based on an affinity chromatography procedure that employs trifluoromethyl ketone ligands. Isoelectric focusing of the purified preparations resulted in multiple bands that coincided to all significant hydrolysis of juvenile hormone detected in this manner. Kinetic experiments using optically pure enantiomers of JH II as substrates showed the two main electromorphs of JH esterase from the hemolymph to have apparently identical kinetic parameters as well as a similar capability to distinguish between substrates that differ in the orientation of the epoxide moiety of JH. However, the enzyme could hydrolyze esters lacking the JH structure. The proteins were shown to be monomers and to have asparagine-linked oligosaccharides, most likely of hybrid structure. Immunochemical and other evidence showed that the affinity-purified proteins were responsible for all significant JH esterase activity during periods of rapid esterolysis in vivo.  相似文献   

8.
Juvenile hormone esterase (JHE) from the serum of the cricket, Gryllus assimilis, was purified to homogeneity in a four-step procedure involving polyethylene glycol precipitation, hydrophobic interaction FPLC, and ion exchange FPLC. This procedure could be completed in 4 days and resulted in a greater than 900-fold purification with greater than 30% recovery. The purified enzyme exhibited a single band on a silver-stained SDS PAGE gel and had an apparent subunit molecular mass of 52 kDa. The native subunit molecular mass, determined by gel permeation FPLC, was 98 kDa, indicating that JHE from Gryllus assimilis is a dimer of two identical or similar subunits. The turnover number of the purified enzyme (1.41 s(-1)), K(M(JH-III)) (84 +/- 12 nM) of nearly-purified enzyme, and k(cat)/K(M) (1.67 x 10(7) s(-1) M(-1)) were similar to values reported for other well-established lepidopteran and dipteran JHEs. JHE from Gryllus assimilis was strongly inhibited by the JHE transition-state analogue OTFP (octylthio-1,1,1-trifluoro-2-propanone; I(50) = 10(-7) M) and by DFP (diisopropyl fluorophosphate; I(50) = 10(-7) M). The shapes of the inhibition profiles suggest the existence of multiple binding sites for these inhibitors or multiple JHEs that differ in inhibition. Isoelectric focusing separated the purified protein into 4 isoforms with pIs ranging from 4.7-4.9. N-terminal amino acid sequences (11-20 amino acids) of the isoforms differed from each other in 1-4 positions, suggesting that the isoforms are products of the same or similar genes. Homogeneously purified JHE hydrolyzed alpha-napthyl esters, did not exhibit any detectable acetylcholinesterase, acid phosphatase, or aminopeptidase activity, and exhibited only very weak alkaline phosphatase activity. JHE exhibited a low (11 microM) K(M) for long-chain alpha-naphthyl esters, indicating that JHE may have physiological roles other than the hydrolysis of JH-III. Purification of JHE represents a key step in our attempts to identify the molecular causes of genetically-based variation in JHE activity in G. assimilis. This represents the first homogeneous purification of JHE from a hemimetabolous insect.  相似文献   

9.
The regulation of the prepupal peak of juvenile hormorne esterase activity was investigated and found to be directly induced by juvenile hormone. Allatectomy and reimplanation as well as juvenile hormone application experiments all indicated that the appearance of prepupal juvenile hormone esterase activity was in response to a prepupal burst of juvenile hormone. Implantation experiments indicated that the effect of juvenile hormone is not mediated through the isolated brain or subesophageal ganglion.  相似文献   

10.
11.
12.
13.
14.
G Weirich  J Wren 《Life sciences》1973,13(3):213-226
Haemolymph of Manduca sexta fifth instar larvae contains a high esterase activity capable of hydrolyzing Hyalophora cecropia C18 juvenile hormone (JH). In an attempt to characterize the substrate specificity of the enzyme (s) involved, dilute haemolymph was incubated in vitro with a series of JH-analogs. Ethyl esters with or without the 10,11-epoxide group were hydrolyzed readily but isopropyl esters and the (2Z)-isomer of JH were not affected. Indirect evidence was obtained for the hydrolysis of aziridine analogs of JH. Correlations of these results to biological activities are discussed.  相似文献   

15.
Juvenile hormone esterase (JHE) from hemolymph of the silkworm moth Bombyx mori was characterized for substrate specificity and inhibitor sensitivity. B. mori JHE hydrolyzed the juvenile hormone surrogate substrate methyl n-heptylthioacetothioate (HEPTAT) more efficiently than p-nitrophenyl acetate and 1-naphthyl acetate substrates widely used to assay total carboxylesterase activity. B. mori JHE was sensitive to 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP), which was developed as a selective inhibitor for lepidopteran JHE, and relatively insensitive to diisopropyl fluorophosphate (DFP), an inhibitor of serine esterases but not of all JHEs. Affinity purification with a trifluoromethyl ketone ligand was more efficient for purification of B. mori JHE than DEAE ion exchange chromatography.  相似文献   

16.
Summary The juvenile hormone esterase (JHE) and juvenile hormone binding protein (JHBP) activities from the last larval instar of 14 species of Lepidoptera (Pieris rapae, Colias eurytheme, Danaus plexippus, Junonia coenia, Hemileuca nevadensis, Pectinophora gossypiella, Spodoptera exigua, Trichoplusia ni, Heliothis virescens, Orygia vetusta, Ephestia elutella, Galleria mellonella, Manduca sexta andEstigmene acrea) were analyzed by analytical isoelectric focusing (IEF). While the multiplicity and isoelectric point of these proteins varied, all of them were mildly acidic (pI 4.0–7.0), and a large number of the species possessed only a single JHE and/or JHBP activity. The Michaelis constants (K m's) of the whole hemolymph JHE activities from selected species for JH III were in the range of 10–7M. The equilibrium dissociation constantK d of the JHBP was determined by Scatchard analysis for selected species as well, with the majority of species having aK d near 10–7M. This information is consistent with JHE acting as a scavenger for JH at various times during development and relying entirely on mass action to remove JH from its protective JHBP complexes. The JHBP should limit nonspecific binding and thus facilitate the rapid transport of the intact hormone through-out the hemocoel. These data indicate that the species currently used in the study of the developmental biology of the Lepidoptera are biochemically similar to a variety of other species in this order.Abbreviations JH juvenile hormone - JHE juvenile hormone esterase - JHBP juvenile hormone binding protein - IEF isoelectric focusing - EPPAT O-ethyl-S-phenyl phosphoramidothiolate - DFP O O-diisopropyl phosphofluoridate  相似文献   

17.
Juvenile hormone esterase (JHE), which catalyzes the hydrolysis of juvenile hormone, was isolated from the hemolymph of 5(th) instars of Lymantria dispar by two different procedures. One procedure was based on affinity chromatography and the other on anion-exchange chromatography. The material from both purifications showed bands of approximately 50 kDa when analyzed by SDS-PAGE. Isoelectric focusing (IEF) gels in combination with enzyme activity assays indicated two isoelectric forms with the same pI values (pH 5.1. and 5.3) from affinity purification and from anion-exchange chromatography. Amino acid sequencing of several internal peptides from the 50 kDa band following affinity purification and alignment of these sequences with JHEs from previously purified lepidopteran species (Heliothis virescens, Manduca sexta) showed high homology of these enzymes.The isolated JHE, at least in the stage of insect used, was different from the enzyme reported earlier [Valaitis, A.P., 1991. Characterization of hemolymph juvenile hormone esterase from Lymantria dispar. Insect Biochemistry 21, 583-595] to hydrolyze JH in the hemolymph of gypsy moth, based on molecular weight and amino acid sequence.  相似文献   

18.
A method is described for increasing the specificity of an immunoassay for catalytically active enzymes and is specifically illustrated with a sensitive assay for an important regulatory enzyme from insects. Trifluoromethyl ketone haptens, potent inhibitors of insect juvenile hormone esterase, were bound to proteins such as hemocyanin (keyhole limpet) and conalbumin (chicken embryo). Haptens containing a thiol group were conjugated using heterobifunctional coupling reagents, and haptens with a carboxylic acid moiety were conjugated by the mixed anhydride method. The trifluoromethyl ketone-protein conjugates, shown to retain their inhibitory activity against juvenile hormone esterase, were used as coating antigens in several solid-phase enzyme-linked immunosorbent assay formats along with specific antibodies raised in rabbits against purified juvenile hormone esterase. The previously unreported format, termed affinity-amplified immunoassay (AAIA), was successfully used for quantitative monitoring of low levels of the esterase in dilute hemolymph and egg homogenates from various lepidopteran insect species, as well as for detection of the native and mutant forms of the enzyme obtained in a recombinant baculovirus expression system. The AAIA format was more sensitive for the target esterase and detected only the catalytically active form of the enzyme.  相似文献   

19.
Major and minor electrophoretic variants of juvenile hormone esterase (JHE) were found in the hemolymph of last instar larvae of Trichoplusia ni, both before and after metamorphic commitment. The average ratios of activity of the two major forms were similar during both last stadium peaks in activity. Immunological analysis showed that the hemolymph concentration of JHE during this stadium paralleled the level of enzymatic activity, and no putative higher molecular weight, inactive forms were detected. Immunological analysis provided the first evidence of relatedness of major and minor forms. After hormonal stimulation, the concentration of the two major forms increased concomitantly and by a similar proportion, suggesting that charge variation, at least for these two major forms, is not a point of hormonal or developmental regulation of JHE.  相似文献   

20.
The role of juvenile hormone (JH) and juvenile hormone esterase (JHE) in regulating wing morph determination was studied in the cricket Modicogryllus confirmatus. JHE activities were significantly higher in nascent long-winged (LW) vs short-winged (SW) crickets during the latter half but not during the first half of the last stadium. The magnitude and direction of the activity differences were similar to those previously documented between wing morphs of the cricket, Gryllus rubens. In contrast, activities of general esterase, an enzyme or group of enzymes with no demonstrated role in regulating the JH titer in insects, showed no or only minor differences between morphs. The magnitude and direction of the JHE activity variation is consistent with a regulatory role for this enzyme in some aspect of wing dimorphism. However, the timing of the differences (exclusively during the last half of the last stadium) argue against a role in regulating wing length development per se. Single or multiple applications of juvenile hormone-III to nascent LW individuals during the first few days of the last stadium significantly redirected development from long to short wings. Multiple applications of acetone, by itself, also increased the production of short-winged adults. For most treatments, all individuals with shortened wings also had undeveloped flight muscles. These data suggest that JH may play a role in wing morph determination in M. confirmatus but that it affects a different aspect of the polymorphism from JHE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号