首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA polymorphism in a worldwide sample of human X chromosomes   总被引:5,自引:0,他引:5  
DNA sequence data from humans can provide insight into the history of modern humans and the genetic variability in human populations. We report here a study of human DNA sequence variation at an X-linked noncoding region of 10,346 bp. The sample consists of 62 X chromosomes from Africa, Europe, and Asia. Forty-four polymorphic sites were found among the 62 sequences, resulting in 23 different haplotypes. Statistical analyses of the data led to the following inferences. (1) There is strong evidence of human population expansion in the relatively recent past, and this population expansion has had a significant effect on the pattern of polymorphism at this locus. (2) Non-African populations were unlikely to have been derived from a very small number of African lineages. (3) There was considerable geographic subdivision in the ancient human population, which could be an important reason why many studies failed to detect population expansion. (4) The long-term effective population size of humans is between 12,000 and 15,000. And (5) a non-African specific variant was found at a frequency of 35% in non-Africans, an estimate supported by the genotyping of additional 80 non-African and 106 African X chromosomes. This variant could have arisen in Eurasia more than 140,000 years ago, predating the emergence of modern humans. Moreover, this haplotype and all other haplotypes coalesced to the most recent common ancestor of the sample, which was estimated to be older than 490,000 years. Therefore, this region may have a long history in Eurasia.  相似文献   

2.
Two dinucleotide short tandem-repeat polymorphisms (STRPs) and a polymorphic Alu element spanning a 22-kb region of the PLAT locus on chromosome 8p12-q11.2 were typed in 1,287-1,420 individuals originating from 30 geographically diverse human populations, as well as in 29 great apes. These data were analyzed as haplotypes consisting of each of the dinucleotide repeats and the flanking Alu insertion/deletion polymorphism. The global pattern of STRP/Alu haplotype variation and linkage disequilibrium (LD) is informative for the reconstruction of human evolutionary history. Sub-Saharan African populations have high levels of haplotype diversity within and between populations, relative to non-Africans, and have highly divergent patterns of LD. Non-African populations have both a subset of the haplotype diversity present in Africa and a distinct pattern of LD. The pattern of haplotype variation and LD observed at the PLAT locus suggests a recent common ancestry of non-African populations, from a small population originating in eastern Africa. These data indicate that, throughout much of modern human history, sub-Saharan Africa has maintained both a large effective population size and a high level of population substructure. Additionally, Papua New Guinean and Micronesian populations have rare haplotypes observed otherwise only in African populations, suggesting ancient gene flow from Africa into Papua New Guinea, as well as gene flow between Melanesian and Micronesian populations.  相似文献   

3.
Drosophila melanogaster is widely used as a model in DNA variation studies. Patterns of polymorphism have, however, been affected by the history of this species, which is thought to have recently spread out of Africa to the rest of the world. We analyzed DNA sequence variation in 11 populations, including four continental African and seven non-African samples (including Madagascar), at four independent X-linked loci. Variation patterns at all four loci followed neutral expectations in all African populations, but departed from it in all non-African ones due to a marked haplotype dimorphism at three out of four loci. We also found that all non-African populations show the same major haplotypes, though in various frequencies. A parsimonious explanation for these observations is that all non-African populations are derived from a single ancestral population having undergone a substantial reduction of polymorphism, probably through a bottleneck. Less likely alternatives involve either selection at all four loci simultaneously (including balancing selection at three of them), or admixture between two divergent populations. Small but significant structure was observed among African populations, and there were indications of differentiation across Eurasia for non-African ones. Since population history may result in non-equilibrium variation patterns, our study confirms that the search for footprints of selection in the D. melanogaster genome must include a sufficient understanding of its history.  相似文献   

4.
Recent extensive analyses of human DNA polymorphism reveal that the ancestral haplotype at various genetic loci occurs almost exclusively in African samples. We develop a coalescence-based simulation method in stepping-stone models with population expansion and examine the probability (P(A)) that the ancestral haplotype is found in African samples and the probability (Q(A)) that the most recent common ancestor of sampled genes occurs in Africa. These probabilities and other summary statistics are used to infer the human demographic history. It is shown that the high observed P(A) value cannot be explained simply by sampling bias. Rather, it suggests that the African population has been more strongly subdivided and isolated from each other than the non-African population and that there must have been some African populations which were not directly involved in the Out-of-Africa expansion in the late Pleistocene.  相似文献   

5.
The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt.  相似文献   

6.
The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ∼500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.  相似文献   

7.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

8.
Drosophila melanogaster originated in Africa and colonized the rest of the world only recently (approximately 10,000 to 15,000 years ago). Using 151 microsatellite loci, we investigated patterns of gene flow between African D. melanogaster populations representing presumptive ancestral variation and recently colonized European populations. Although we detected almost no evidence for alleles of non-African ancestry in a rural D. melanogaster population from Zimbabwe, an urban population from Zimbabwe showed evidence for admixture. Interestingly, the degree of admixture differed among chromosomes. X chromosomes of both rural and urban populations showed almost no non-African ancestry, but the third chromosome in the urban population showed up to 70% of non-African alleles. When chromosomes were broken into contingent microsatellite blocks, even higher estimates of admixture and significant heterogeneity in admixture was observed among these blocks. The discrepancy between the X chromosome and the third chromosome is not consistent with a neutral admixture hypothesis. The higher number of European alleles on the third chromosome could be due to stronger selection against foreign alleles on the X chromosome or to more introgression of (beneficial) alleles on the third chromosome.  相似文献   

9.
Thornton K  Andolfatto P 《Genetics》2006,172(3):1607-1619
Genome-wide nucleotide variation in non-African populations of Drosophila melanogaster is a subset of variation found in East sub-Saharan African populations, suggesting a bottleneck in the history of the former. We implement an approximate Bayesian approach to infer the timing, duration, and severity of this putative bottleneck and ask whether this inferred model is sufficient to account for patterns of variability observed at 115 loci scattered across the X chromosome. We estimate a recent bottleneck 0.006N(e) generations ago, somewhat further in the past than suggested by biogeographical evidence. Using various proposed statistical tests, we find that this bottleneck model is able to predict the majority of observed features of diversity and linkage disequilibrium in the data. Thus, while precise estimates of bottleneck parameters (like inferences of selection) are sensitive to model assumptions, our results imply that it may be unnecessary to invoke frequent selective sweeps associated with the dispersal of D. melanogaster from Africa to explain patterns of variability in non-African populations.  相似文献   

10.
Levels of neutral variation are influenced by background selection and hitchhiking. The relative contribution of these evolutionary forces to the distribution of neutral variation is still the subject of ongoing debates. Using 133 microsatellites, we determined levels of variability on X chromosomes and autosomes in African and non-African D. melanogaster populations. In the ancestral African populations microsatellite variability was higher on X chromosomes than on autosomes. In non-African populations X-linked polymorphism is significantly more reduced than autosomal variation. In non-African populations we observed a significant positive correlation between X chromosomal polymorphism and recombination rate. These results are consistent with the interpretation that background selection shapes levels of neutral variability in the ancestral populations, while the pattern in derived populations is determined by multiple selective sweeps during the colonization process. Further research, however, is required to investigate the influence of inversion polymorphisms and unequal sex ratios.  相似文献   

11.
Surveys of molecular variation in Drosophila melanogaster and Drosophila simulans have suggested that diversity outside of Africa is a subset of that within Africa. It has been argued that reduced levels of diversity in non-African populations reflect a population bottleneck, adaptation to temperate climates, or both. Here, I summarize the available single-nucleotide polymorphism data for both species. A simple "out of Africa" bottleneck scenario is consistent with geographic patterns for loci on the X chromosome but not with loci on the autosomes. Interestingly, there is a trend toward lower nucleotide diversity on the X chromosome relative to autosomes in non-African populations of D. melanogaster, but the opposite trend is seen in African populations. In African populations, autosomal inversion polymorphisms in D. melanogaster may contribute to reduced autosome diversity relative to the X chromosome. To elucidate the role that selection might play in shaping patterns of variability, I present a summary of within- and between-species patterns of synonymous and replacement variation in both species. Overall, D. melanogaster autosomes harbor an excess of amino acid replacement polymorphisms relative to D. simulans. Interestingly, range expansion from Africa appears to have had little effect on synonymous-to-replacement polymorphism ratios.  相似文献   

12.
The centromeric region of the X chromosome in humans experiences low rates of recombination over a considerable physical distance. In such a region, the effects of selection may extend to linked sites that are far away. To investigate the effects of this recombinational environment on patterns of nucleotide variability, we sequenced 4581 bp at Msn and 4697 bp at Alas2, two genes situated on either side of the X chromosome centromere, in a worldwide sample of 41 men, as well as in one common chimpanzee and one orangutan. To investigate patterns of linkage disequilibrium (LD) across the centromere, we also genotyped several informative sites from each gene in 120 men from sub-Saharan Africa. By studying X-linked loci in males, we were able to recover haplotypes and study long-range patterns of LD directly. Overall patterns of variability were remarkably similar at these two loci. Both loci exhibited (i) very low levels of nucleotide diversity (among the lowest seen in the human genome); (ii) a strong skew in the distribution of allele frequencies, with an excess of both very-low and very-high-frequency derived alleles in non-African populations; (iii) much less variation in the non-African than in the African samples; (iv) very high levels of population differentiation; and (v) complete LD among all sites within loci. We also observed significant LD between Msn and Alas2 in Africa, despite the fact that they are separated by approximately 10 Mb. These observations are difficult to reconcile with a simple demographic model but may be consistent with positive and/or purifying selection acting on loci within this large region of low recombination.  相似文献   

13.
Haplotype diversity in a genomic region of approximately 70 kb in 1q21 between genes PKLR and GBA was characterized by typing one single nucleotide polymorphism (SNP) in PKLR, two SNPs in GBA and one short tandem repeat polymorphism (STRP) in PKLR in 1792 chromosomes from 17 worldwide populations. Two other SNPs in GBA were typed in three African populations. Most chromosomes carried one of either two phylogenetically distinct haplotypes with different alleles at each site. Allele diversity at the STRP was tightly linked to haplotype background. Linkage disequilibrium (LD) was highly significant for all SNP pairs in all populations, although it was, on average, slightly higher in non-African populations than in sub-Saharan Africans. Variation at PKLR-GBA was also tightly linked to that at the GBA pseudogene, 16 kb downstream from GBA. Thus, a 90 kb-long LD block was observed, which points to a low recombination rate in this region. Detailed haplotype phylogeny suggests that the chimpanzee GBA haplotype is not one of the two most frequent haplotypes. Based on variability at the PKLR STRP and on the geographical distribution of LD, the expansion of the two main haplotypes may have predated the "Out of Africa" expansion of anatomically modern humans. LD and STRP variability in non-Africans are approximately 87% of those in Africans, in contrast with other loci; this implies that the "out of Africa" bottleneck may have had a broad distribution of effects across loci.  相似文献   

14.
The innate immunity system constitutes the first line of host defense against pathogens. Two closely related innate immunity genes, CD209 and CD209L, are particularly interesting because they directly recognize a plethora of pathogens, including bacteria, viruses, and parasites. Both genes, which result from an ancient duplication, possess a neck region, made up of seven repeats of 23 amino acids each, known to play a major role in the pathogen-binding properties of these proteins. To explore the extent to which pathogens have exerted selective pressures on these innate immunity genes, we resequenced them in a group of samples from sub-Saharan Africa, Europe, and East Asia. Moreover, variation in the number of repeats of the neck region was defined in the entire Human Genome Diversity Panel for both genes. Our results, which are based on diversity levels, neutrality tests, population genetic distances, and neck-region length variation, provide genetic evidence that CD209 has been under a strong selective constraint that prevents accumulation of any amino acid changes, whereas CD209L variability has most likely been shaped by the action of balancing selection in non-African populations. In addition, our data point to the neck region as the functional target of such selective pressures: CD209 presents a constant size in the neck region populationwide, whereas CD209L presents an excess of length variation, particularly in non-African populations. An additional interesting observation came from the coalescent-based CD209 gene tree, whose binary topology and time depth (approximately 2.8 million years ago) are compatible with an ancestral population structure in Africa. Altogether, our study has revealed that even a short segment of the human genome can uncover an extraordinarily complex evolutionary history, including different pathogen pressures on host genes as well as traces of admixture among archaic hominid populations.  相似文献   

15.
Evolution of beta-globin haplotypes in human populations   总被引:2,自引:0,他引:2  
The beta-globin haplotypes of 852 chromosomes from 12 populations in the Asia-Pacific region are described. These data are combined with those from other populations in an investigation of the affinities of regional human populations. Both partial maximum-likelihood and distance Wagner methods indicate that Africans are the most divergent group, with the remaining populations branching in the following order: Australian Aborigines, Highland Melanesians, Lowland Melanesians, Indonesians and Micronesians, Polynesians, east Asians, Indians, and Europeans. This pattern of relationship is consistent with that indicated by other data. Analysis of the evolution and distribution of haplotype occurrence provides some limited support for an origin of modern humans in Africa. Otherwise, however, it was not useful in further elucidating the evolutionary history of human populations.  相似文献   

16.
A previous polymorphism survey of the type 2 diabetes gene CAPN10 identified a segment showing an excess of polymorphism levels in all population samples, coinciding with localized breakdown of linkage disequilibrium (LD) in a sample of Hausa from Cameroon, but not in non-African samples. This raised the possibility that a recombination hotspot is present in all populations and we had insufficient power to detect it in the non-African data. To test this possibility, we estimated the crossover rate by sperm typing in five non-African men; these estimates were consistent with the LD decay in the non-African, but not in the Hausa data. Moreover, resequencing the orthologous region in a sample of Western chimpanzees did not show either an excess of polymorphism level or rapid LD decay, suggesting that the processes underlying the patterns observed in humans operated only on the human lineage. These results suggest that a hotspot of recombination has recently arisen in humans and has reached higher frequency in the Hausa than in non-Africans, or that there is no elevation in crossover rate in any human population, and the observed variation results from long-standing balancing selection.  相似文献   

17.
We report the frequencies of a deletion polymorphism at the alpha 2 (1) collagen gene (COL1A2) and argue that this distribution has major implications for understanding the evolution of modern humans immediately after their exodus from sub-Saharan Africa as well as their subsequent spread to all continents. The high frequency of the deletion in non-African populations and its complete absence in sub-Saharan African groups suggest that the deletion event occurred just before or shortly after modern humans left Africa. The deletion probably arose shortly after the African exodus in a group whose descendants were among the ancestors of all contemporary populations, except for sub-Saharan Africans. This, of course, does not imply that there was a single migration out of Africa. The GM immunoglobulin haplotype GM*A,X G displays a similar distribution to that for the COL1A2 deletion, and these 2 polymorphisms suggest that the exodus from Africa may not have been a rapid dispersion to all other regions of the world. Instead, it may have involved a period of time for the savanna-derived gene pool to adapt to novel selective agents, such as bacteria, viruses, and/or environmental xenobiotics found in both animal and plant foods in their new environment. In this context these polymorphisms are indicators of the evolution that occurred before the diaspora of these populations to the current distribution of modern peoples.  相似文献   

18.
mtDNA sequence variation was examined in 140 Africans, including Pygmies from Zaire and Central African Republic (C.A.R.) and Mandenkalu, Wolof, and Pular from Senegal. More than 76% of the African mtDNAs (100% of the Pygmies and 67.3% of the Senegalese) formed one major mtDNA cluster (haplogroup L) defined by an African-specific HpaI site gain at nucleotide pair (np) 3592. Additional mutations subdivided haplogroup L into two subhaplogroups, each encompassing both Pygmy and Senegalese mtDNAs. A novel 12-bp homoplasmic insertion in the intergenic region between tRNA(Tyr) and cytochrome oxidase I (COI) genes was also observed in 17.6% of the Pygmies from C.A.R. This insertion is one of the largest observed in human mtDNAs. Another 25% of the Pygmy mtDNAs harbored a 9-bp deletion between the cytochrome oxidase II (COII) and tRNA(Lys) genes, a length polymorphism previously reported in non-African populations. In addition to haplogroup L, other haplogroups were observed in the Senegalese. These haplogroups were more similar to those observed in Europeans and Asians than to haplogroup L mtDNAs, suggesting that the African mtDNAs without the HpaI np 3592 site could be the ancestral types from which European and Asian mtDNAs were derived. Comparison of the intrapopulation sequence divergence in African and non-African populations confirms that African populations exhibit the largest extent of mtDNA variation, a result that further supports the hypothesis that Africans represent the most ancient human group and that all modern humans have a common and recent African origin. The age of the total African variation was estimated to be 101,000-133,000 years before present (YBP), while the age of haplogroup L was estimated at 98,000-130,000 YBP. These values substantially exceed the ages of all Asian- and European-specific mtDNA haplogroups.  相似文献   

19.
To identify putatively swept regions of the Drosophila melanogaster genome, we performed a microsatellite screen spanning a 260-kb region of the X chromosome in populations from Zimbabwe, Ecuador, the United States, and China. Among the regions identified by this screen as showing a complex pattern of reduced heterozygosity and a skewed frequency spectrum was the gene diminutive (dm). To investigate the microsatellite findings, nucleotide sequence polymorphism data were generated in populations from both China and Zimbabwe spanning a 25-kb region and encompassing dm. Analysis of the sequence data reveals strongly reduced nucleotide variation across the entire gene region in both the non-African and the African populations, an extended haplotype pattern, and structured linkage disequilibrium, as well as a rejection of neutrality in favor of selection using a composite likelihood-ratio test. Additionally, unusual patterns of synonymous site evolution were observed at the second exon of this locus. On the basis of simulation studies as well as recently proposed methods for distinguishing between selection and nonequilibrium demography, we find that this "footprint" is best explained by a selective sweep in the ancestral population, the signal of which has been somewhat blurred via founder effects in the non-African samples.  相似文献   

20.
Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号