首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling of protein loops by simulated annealing.   总被引:6,自引:5,他引:1       下载免费PDF全文
A method is presented to model loops of protein to be used in homology modeling of proteins. This method employs the ESAP program of Higo et al. (Higo, J., Collura, V., & Garnier, J., 1992, Biopolymers 32, 33-43) and is based on a fast Monte Carlo simulation and a simulated annealing algorithm. The method is tested on different loops or peptide segments from immunoglobulin, bovine pancreatic trypsin inhibitor, and bovine trypsin. The predicted structure is obtained from the ensemble average of the coordinates of the Monte Carlo simulation at 300 K, which exhibits the lowest internal energy. The starting conformation of the loop prior to modeling is chosen to be completely extended, and a closing harmonic potential is applied to N, CA, C, and O atoms of the terminal residues. A rigid geometry potential of Robson and Platt (1986, J. Mol. Biol. 188, 259-281) with a united atom representation is used. This we demonstrate to yield a loop structure with good hydrogen bonding and torsion angles in the allowed regions of the Ramachandran map. The average accuracy of the modeling evaluated on the eight modeled loops is 1 A root mean square deviation (rmsd) for the backbone atoms and 2.3 A rmsd for all heavy atoms.  相似文献   

2.
Na,K-ATPase from rectal glands of Squalus acanthias has been subjected to proteolysis with trypsin. The E1- and E2-forms of the enzyme can be distinguished from the inactivation patterns at low trypsin concentrations, as previously seen with kidney enzyme. Extensive degradation by trypsin in the presence of 5 mM Rb+ yields membrane fragments with a 19 kDa peptide as the major proteolytic fragment of the alpha-subunit. The sequence of the N-terminal 40 residues of this peptide is almost identical to that of a similar proteolytic fragment isolated by Capasso et al. (Capasso, J.M., Hoving, S., Tal, D.M., Goldshleger, R. and Karlish, S.J.D. (1992) J. Biol. Chem. 267, 1150-1158) using kidney Na,K-ATPase. Rb+ occlusion can be fully retained under these circumstances, supporting the findings with kidney enzyme that only minor parts of the alpha-subunit are required to form a functional occlusion-site.  相似文献   

3.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

4.
Bisphosphoglycerate synthase (glycerate-1,3-P2 yields glycerate-2,3-P2) and phosphoglycerate mutase (glycerate-3-P formed from glycerate-2-P) are both phosphorylated by substrates at a histidine residue forming covalent intermediates which have been shown to function in the phosphoryl transfer reactions catalyzed by these enzymes (Rose, Z. B., and Dube, S. (1976) J. Biol. Chem. 251, 4817--4822). We have phosphorylated bisphosphoglycerate synthase from horse red blood cells with [U-32P]glycerate-2,3-P2, digested with trypsin, and purified the phosphopeptide. The amino acid sequence of the phosphohistidine peptide has been determined to be: His-Gly-Gln-Gly-Ala-Trp-Asn-Lys. In like manner, a phosphohistidyl peptide has now been purified from yeast phosphoglycerate mutase, for which the amino acid sequence is known (Winn, S. I., Watson, H. C., Fothergill, L. A., and Harkins, R. N. (1977) Biochem. Soc. Trans. 5, 657-659). The amino acid composition of the phosphopeptide indicates that histidine-8 was phosphorylated. The sequence of this peptide is closely homologous with the active site peptide from bisphosphoglycerate synthase. In yeast phosphoglycerate mutase, the denatured phosphoenzyme hydrolyzes with a single rate constant of 2.02 X 10(-4) s-1 at pH 3, 45 degrees C. The relevance of these observations to the enzymatic mechanism is discussed.  相似文献   

5.
Friend murine erythroleukemia cells (MEL cells) contain a cAMP-independent protein kinase which phosphorylates the 100,000-Da catalytic subunit of the (Na,K)-ATPase both in living cells and in the purified plasma membrane (Yeh, L.-A., Ling, L., English, L., and Cantley, L. (1983) J. Biol. Chem. 258, 6567-6574). We have taken advantage of the selective phosphorylation of the 100,000-Da subunit in purified plasma membranes and the similarity between the proteolysis patterns of the MEL cell and dog kidney (Na,K)-ATPase to map the site of kinase phosphorylation on the MEL cell enzyme. The chymotryptic and tryptic cleavage sites of the dog kidney (Na,K)-ATPase have previously been located (Castro, J., and Farley, R. A. (1979) J. Biol. Chem. 254, 2221-2228). The 100,000-Da catalytic subunits of the dog kidney and MEL cell enzymes were specifically labeled at the active site aspartate residue by incubation with (32P)orthophosphate in the presence of Mg2+ and ouabain. Digestion of these two enzymes with chymotrypsin or trypsin revealed similar active site aspartate containing proteolytic fragments indicating a similar structure for the two enzymes. Chymotryptic digestions of MEL cell (Na,K)-ATPase labeled in vitro with [gamma-32P]ATP localize the region of kinase phosphorylation to within a 35,000-Da peptide derived from the middle of the 100,000-Da subunit. Tryptic digestion of the MEL cell plasma membranes degraded the 100,000-Da subunit to an NH2-terminal 43,000-Da peptide which contained the active site aspartate but which did not contain the kinase-labeled region. These results further locate the region of kinase phosphorylation to the COOH-terminal half of the 35,000-Da chymotryptic peptide. This location places the site of phosphorylation between the active site aspartate residue which accepts the phosphate of ATP during turnover and an ATP-binding site which has previously been located by labeling with fluorescein 5'-isothiocyanate (Carilli, C. T., Farley, R. A., Perlman, D. M., and Cantley, L. C. (1982) J. Biol. Chem. 257, 5601-5606). Phosphorylation of the (Na,K)-ATPase in this region may serve to regulate the activity of this enzyme.  相似文献   

6.
To find a new trypsin-like enzyme, a simple assay method of the hydrolysis activity for trypsin has been found. We used 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) in the peptide labeling as a substrate for the trypsin-like peptidase in this study. The peptidase activity of trypsin was detected by using an AQC-chymotryptic peptide (AHP1) obtained from bovine hemoglobin. This showed that the substrate specificity of trypsin-like peptidase was distinguishable from that of the others by this procedure, and the method was used extensively in cases of various trypsin inhibitors with no significant interference from the concomitant.  相似文献   

7.
Using a partially purified HL-60 tyrosine protein kinase, we designed a new HPLC method for the measurement of tyrosylphosphorylation of angiotensin II. The present method uses reversed-phase chromatography and elution involving an acetonitrile gradient containing the counterion tetrabutylammonium phosphate. The peptide substrate, [gamma-32P]ATP, the cosubstrate, and 32P-labeled phosphorylated peptides were quantified online by measuring the Cerenkov effect. Injections, separation, and analysis were performed automatically. Furthermore, the method permits a direct visualization of peptide substrate phosphorylation and has a potentially universal application; i.e., it is usable with any kind of peptide in a given range of hydrophobicity. This assay was designed for specificity studies, which are of major importance at the molecular level, in order to understand active site topology and the biophysical requirements of tyrosine protein kinases. As examples, data on chromatography separations of angiotensin II analogs (five to ten amino acids in length) are presented, as well as for other peptide substrates such as RR-src, the pp60src autophosphorylation site-derived peptide, and minigastrin. We adapted our experimental conditions to accommodate crude extracts from HL-60 cells. Preliminary experiments clearly indicated that other biological sources can be used. Despite the existence of numerous methods published in the literature for the measurement of kinase activities, the method presented herein is the only one to the authors' knowledge that can be used in and has been assessed for specificity studies. Peptides do not require particular features such as charged residues (i.e., arginine) to be analyzed.  相似文献   

8.
When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido[alpha-32P]adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled [Dalbon, P., Boulay, F., & Vignais, P. V. (1985) FEBS Lett. 180, 212-218]. The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.  相似文献   

9.
The complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli has been established in the following manner. After being reduced with dithiothreitol, the purified aldolase was alkylated with iodoacetamide and subsequently digested with trypsin. The resulting 19 peptide peaks observed by high performance liquid chromatography, which compared with 21 expected tryptic cleavage products, were all isolated, purified, and individually sequenced. Overlap peptides were obtained by a combination of sequencing the N-terminal region of the intact aldolase and by cleaving the intact enzyme with cyanogen bromide followed by subdigestion of the three major cyanogen bromide peptides with either Staphylococcus aureus V8 endoproteinase, endoproteinase Lys C, or trypsin after citraconylation of lysine residues. The primary structure of the molecule was determined to be as follows. (formula; see text) 2-Keto-4-hydroxyglutarate aldolase from E. coli consists of 213 amino acids with a subunit and a trimer molecular weight of 22,286 and 66,858, respectively. No microheterogeneity is observed among the three subunits. The peptide containing the active-site arginine residue (Vlahos, C. J., Ghalambor, M. A., and Dekker, E. E. (1985) J. Biol. Chem. 260, 5480-5485) was also isolated and sequenced; this arginine residue occupies position 49. The Schiff base-forming lysine residue (Vlahos, C. J., and Dekker, E. E. (1986) J. Biol. Chem. 261, 11049-11055) is located at position 133. Whereas the active-site lysine peptide of this aldolase shows 65% homology with the same peptide of 2-keto-3-deoxy-6-phosphogluconate aldolase from Pseudomonas putida, these two proteins in toto show 49% homology.  相似文献   

10.
Fructose-1,6-bisphosphatase from rat liver was phosphorylated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Brief exposure of the 32P-labeled enzyme to trypsin removed all radioactivity from the enzyme core and produced a single-labeled peptide. The partial sequence of the 17-amino acid peptide was found to be Ser-Arg-Pro-Ser(P)-Leu-Pro-Leu-Pro-(Ser2, Glx2, Pro2, Leu, Arg2). The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of native fructose bisphosphatase were compared with those of rat liver type L pyruvate kinase where the sequence around the phosphoserine is known (Arg-Arg-Ala-Ser(P)-Val; Hjelmquist, G., Anderson, J., Edlund, B., and Engstrom, L. (1974) Biochem. Biophys. Res. Commun. 61, 559-563). The Km for pyruvate kinase (17 microM) was less than that for fructose bisphosphatase (58 microM); the Vmax was about 3-fold greater with pyruvate kinase as substrate. The relationship between the rates of phosphorylation of these native substrates and the amino acid sequences surrounding the phosphorylated sites is discussed.  相似文献   

11.
Tyrosine hydroxylase, a key enzyme in the biosynthesis of catecholamines, was previously shown to be phosphorylated on four distinct serine residues in PC12 cell cultures, each one being specific for the kinase system involved (McTigue, M., Cremins, J., and Halegoua, S. (1985) J. Biol. Chem. 260, 9047-9056). A cAMP- and Ca2+-independent protein kinase was found to be associated with tyrosine hydroxylase purified from rat pheochromocytoma tumor. The use of this activity and the availability of a large amount of purified tyrosine hydroxylase allowed identification of the site phosphorylated by this kinase activity. A peptide of 1.5 kDa (about 12 residues long), carrying the phosphorylation site, was released from 32P-labeled tyrosine hydroxylase by limited proteolysis with trypsin. This peptide was isolated from trypsinized tyrosine hydroxylase by sequential gel filtration and ion exchange chromatographies. Analysis by thin layer chromatography of an acid hydrolysate of the peptide revealed that it contained phosphoserine. The sequence determination of the peptide showed that it corresponded to the residues 38-45 in the tyrosine hydroxylase primary structure (Arg-Gln-Ser(P)-Leu-Ile-Glu-Asp-Ala). Thus, the associated kinase phosphorylated Ser-40, one of the phosphorylation sites for the cAMP-dependent protein kinase also found in rat pheochromocytoma tumors. These results are compared to those recently appearing in a report by Campbell et al. (Campbell, D. G., Hardie, D. G., and Vulliet, P. R. (1986) J. Biol. Chem. 261, 10489-10492).  相似文献   

12.
The localization of the active site of penicillin-binding protein 5 from the dacA mutant of Escherichia coli strain TMRL 1222 has been determined. The protein was purified to homogeneity and labeled with [14C] penicillin G. The labeled protein was digested with trypsin, and the active site tryptic peptide was purified by a combination of gel filtration and high-pressure liquid chromatography. Sequencing of the purified [14C]penicilloyl peptide yielded the sequence Arg-Asp-Pro-Ala-Ser-Leu-Thr-Lys, which corresponds to residues 40-47 of the gene sequence (Broome-Smith, J., Edelman, A., and Spratt, B. G. (1983) in The Target of Penicillin (Hakenbeck, R., Holtje, J.-V., and Labischinski, H., eds) pp. 403-408, Walter de Gruyter, Berlin). The catalytic amino acid residue that forms a covalent bond with penicillin was identified by treating the purified [14C]penicilloyl peptide with a mixture of proteases and then separating the radioactive products using high-pressure liquid chromatography. Analysis of the radioactive peaks by amino acid analysis confirmed that it is the serine residue that reacts with the beta-lactam ring of penicillin.  相似文献   

13.
Identification of the protein kinase C phosphorylation site in neuromodulin   总被引:11,自引:0,他引:11  
E D Apel  M F Byford  D Au  K A Walsh  D R Storm 《Biochemistry》1990,29(9):2330-2335
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin [Alexander, K. A., Cimler, B. M., Meier, K. E., & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113], and we have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar Km values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [gamma-32P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32P-labeled tryptic peptide was generated from phosphorylated neuromodulin. The sequence of this peptide was IQASFR. The serine in this peptide corresponds to position 41 of the entire protein, which is adjacent to or contained within the calmodulin binding domain of neuromodulin. A synthetic peptide, QASFRGHITRKKLKGEK, corresponding to the calmodulin binding domain with a few flanking residues, including serine-41, was also phosphorylated by protein kinase C. We conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmodulin to neuromodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

15.
K Y Xu 《Biochemistry》1989,28(14):5764-5772
Determinations of reaction stoichiometry demonstrate that the covalent incorporation of one molecule of 5'-isothiocyanatofluorescein can inactivate one molecule of sodium and potassium ion activated adenosinetriphosphatase in agreement with earlier determination of this stoichiometry. Several different modified peptides are produced, however, when the modified enzyme is digested with trypsin. One of these peptides has been identified as HLLVMK (thioureidylfluorescein)GAPER by use of a specific immunoadsorbent. The modified lysine is lysine 501 in the amino acid sequence of the alpha polypeptide of (Na+ + K+)-ATPase. This peptide has been previously isolated from such digests [Farley, R. A., Tran, C. M., Carilli, C. T., Hawke, D., & Shively, J. E. (1984) J. Biol. Chem. 259, 9532-9535]. The other specifically modified peptides have been purified and identified by amino acid sequencing. Their sequences identify lysine 480 and lysine 766 from the alpha polypeptide as amino acids modified by 5'-isothiocyanatofluorescein in reactions sensitive to the addition of ATP and responsible for inactivation of the enzyme.  相似文献   

16.
Mild trypsin proteolysis of the H+-ATPase from yeast plasma membranes has been used to identify structurally distinct catalytic intermediates. In the absence of substrate, trypsin treatment resulted in rapid inactivation of enzyme activity. By contrast, trypsin treatment of enzyme in the presence of MgATP or MgATP plus vanadate resulted in enhanced rates of ATP hydrolysis accompanied by protection from extensive inactivation. High concentrations of Pi also induced strong protection from trypsin-induced inactivation, although enhancement of enzyme activity was not observed. Western blot analysis of peptide fragment profiles following tryptic digestion indicated that at least 15 prominent fragments of identical size, ranging from Mr = 12,800 to 48,000, were generated irrespective of digestion conditions. However, fragments from protected enzyme were resistant to further proteolysis, whereas fragments from unprotected enzyme were extensively degraded. These data have been interpreted in terms of a published catalytic reaction pathway (Amory, A., Goffeau, A., McIntosh, D.B., and Boyer, P.D. (1982) J. Biol. Chem. 257, 12509-12516) and are consistent with unprotected and protected enzyme conformations representing E1 and E2 X Pi catalytic intermediates, respectively. Trypsin proteolysis proved an effective tool for evaluating preferred enzyme conformational states and with this approach, it was found that ATPase inhibitors N-ethylmaleimide and fluorescein isothiocyanate locked the enzyme in an E1 conformation. The enhanced rate of ATP hydrolysis by trypsin-treated enzyme was fully coupled to proton transport, and all fragments generated by proteolysis were firmly bound to the membrane. These results, coupled with the fact that initial peptide fragmentation profiles were independent of enzyme conformation, suggest that the different conformational states, E1, and E2 X Pi, are not related to gross changes in overall enzyme structure but likely reflect localized changes in intramolecular bonding.  相似文献   

17.
Soybean trypsin inhibitor, a protein of Mr = 20,000, has been used to assess the degree of inaccessibility of porcine trypsin within the alpha 2-macroglobulin-trypsin complex. The interaction between alpha 2-macroglobulin-bound trypsin and the inhibitor was demonstrated by affinity chromatography and trypsin inhibition. Whereas the free trypsin-inhibitor association is very fast (k = 1.2 X 10(7) M-1 s-1), the reaction between complexed trypsin and inhibitor takes 10 h to reach equilibrium. In addition, alpha 2-macroglobulin reduces, by several orders of magnitude, the affinity of trypsin for the inhibitor. Only one of the two trypsin molecules of the ternary (trypsin)2-alpha 2-macroglobulin complex is readily accessible to soybean inhibitor. It is postulated that the recently discovered proximity of the alpha 2-macroglobulin binding sites (Pochon, F., Favaudon, V., Tourbez-Perrin, M., and Bieth, J. (1981) J. Biol. Chem. 256, 547-550) accounts for this behavior. In the light of these results it is concluded that the proteinase binding sites are localized on the alpha 2-macroglobulin surface and that the two subunits of this protein are either not identical or not symmetrically arranged.  相似文献   

18.
A high mobility group (HMG) nonhistone protein fraction HMG(1+2) from pig thymus, composed of HMG1 and HMG2, has an activity to unwind the double helical structure of DNA (Yoshida, M. and Shimura, K. (1984) J. Biochem. 95, 117-124; Makiguchi, K., Chida, Y., Yoshida, M., and Shimura, K. (1984) J. Biochem. 95, 423-429). The HMG(1+2) was cleaved with trypsin, followed by peptide separation by ionic exchange column chromatography with Polybuffer exchanger PBE94. The effects of five peptide fractions thus obtained on the thermal denaturation of DNA were measured. A peptide containing a high glutamic and aspartic (HGA) region, of the composition Glu34Asp15Lys3, unwound DNA depending on the presence of Mg2+ or Ca2+, while other peptide fractions did not, suggesting that the HGA region in HMG(1+2) is an active site in the unwinding reaction of the double helical structure of DNA.  相似文献   

19.
Charybdotoxin (ChTX), a potent inhibitor of the high conductance Ca2(+)-activated K+ channel (PK,Ca) is a highly basic peptide isolated from venom of the scorpion Leiurus quinquestriatus hebraeus, whose primary structure has been determined (Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3329-3333). The synthesis of this peptide using continuous flow solid phase fluorenylmethyloxycarbonyl-pentafluorophenyl ester methodology has now been achieved. The 1-37-amino acid hexasulfhydryl peptide oxidizes readily to give the tricyclic disulfide structure in good yield. This folded synthetic material is identical to native toxin based on three criteria: co-migration with ChTX on reversed phase high performance liquid chromatography (HPLC); competitive inhibition of 125I-labeled monoiodotyrosine charybdotoxin binding to bovine aortic sarcolemmal membrane vesicles with a Ki (10 pM) identical to that of native toxin; blockade of PK,Ca activity in excised outside-out patches from bovine aortic smooth muscle with the potency and inhibitory properties characteristic of ChTX (i.e. appearance of silent periods interdispersed with normal bursts of channel activity in single channel recordings). Selective enzymatic digestion of native or synthetic ChTX by simultaneous exposure to chymotrypsin and trypsin yields identical reversed phase HPLC profiles. Analysis of the sequence and amino acid composition of the resulting fragments defines a disulfide bond arrangement (Cys7-Cys28, Cys13-Cys33, Cys17-Cys35) which differs from that previously suggested. This configuration predicts a highly folded tertiary structure for ChTX which, together with observations from electrophysiological and binding experiments, suggests a possible mechanism by which ChTX interacts with PK,Ca to block channel function.  相似文献   

20.
(Na,K)-ATPase in an active-transport protein that couples the energy obtained from the hydrolysis of ATP to the transport of Na+ and K+ across animal cell membranes. In order to investigate the enzymatic mechanism of this activity, a peptide derived from the ATP-binding site of (Na,K)-ATPase has been purified and its amino acid sequence has been determined. The peptide was identified by the covalent incorporation of a fluorescent probe, fluorescein 5'-isothiocyanate, into the active site before trypsin digestion of the protein. The labeling of (Na,K)-ATPase by fluorescein 5'-isothiocyanate was associated with the irreversible inhibition of enzymatic activity, and both the labeling of the tryptic peptide and inhibition of activity were prevented when the reaction was performed in the presence of ATP. An apparent KD of 5.7 microM was calculated when the reaction between (Na,K)-ATPase and fluorescein 5'-isothiocyanate was performed under pseudo first-order conditions. The amino acid sequence of the active-site peptide, His-Leu-Leu-Val-Met-Lys-Gly-Ala-Pro-Glu-Arg, is similar to the sequence of a fluorescein-labeled peptide derived from the active site of the sarcoplasmic reticulum Ca2+-transport ATPase (Mitchinson, C., Wilderspin, A. F., Trinaman, B. J., and Green, N. M. (1982) FEBS Lett. 146, 87-92).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号