首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carassius RFamide (C-RFa) is a peptide, isolated originally from the brain of Japanese crucian carp and sharing homologies with mammalian prolactin-releasing peptides. From the physiological aspect, it is known that C-RFa has contraction-promoting action on fish intestines, but its localization in peripheral tissues is unknown. We observed the localization of C-RFa in teleost guts using an immunohistochemical technique. C-RFa-like immunoreactive (irC-RFa) sites were observed in not only the smooth muscle cells in the longitudinal muscle layer, but also in both Auerbach's and Meissner's nerve plexus in the stomach, pyloric ceca and intestine. In epithelial mucous cells, irC-RFa sites were observed in the surface mucous cells in the stomach in freshwater fish (FW), and in the goblet cells of the apical sites in the villi of the pyloric ceca and intestine in all fish. In the stomach, irC-RFa sites were found in the fundic glands of the body regions in seawater (SW) and brackish water (BW) fish, but not in FW fish. This study confirmed that one of the functions of C-RFa is the smooth muscle contraction of the longitudinal muscle layer in digestive organs. We suggest that C-RFa may have functional roles in both central and peripheral neurotransmission. In addition, it appears that the difference in C-RFa localization of SW, BW, and FW fish reflects the adaptation of the stomach function to different salinity habitats.  相似文献   

2.
The Japanese flathead, Inegocia japonica Cuvier, 1829 is a commercially important fish in small-scale coastal fisheries in Thailand; however, an explanation of its digestive biology is missing. This study describes the digestive tract and accessory organs of I. japonica, using morphological and histological methods. The fish (10 individual fish, 24.5 ± 0.98 cm in total length) were obtained from Libong Island, Thailand. Integrated morphological and histological data showed that the digestive tract was composed of oesophagus, stomach, pyloric caeca and intestine, with accessory organs. All digestive tracts consisted of four layers, including mucosa, submucosa, muscularis and serosa. Two stomach regions were identified (cardiac and pyloric stomachs). Several clusters of gastric glands were identified in the cardiac stomach. Each gland was a unicellular structure. The apical surface of this gland contained the vacuolar cell. The intestine was lined with a simple columnar structure with goblet cells that was similar to pyloric caecum. Goblet cells were rare in the anterior intestine, in contrast to the posterior intestine where goblet cells were abundant. The numerous of hepatocyte was mostly observed in the liver, whereas an exocrine acinar cell of pancreas was also identified. The results of our observations provided the first information of the digestive tract of I. japonica and can be applied to advanced study, such as physiology and histopathology.  相似文献   

3.
 The ontogenetic expression of chromogranin A (CgA) and its derived peptides, WE-14 and pancreastatin (PST), was studied in the rat neuroendocrine system employing immunohistochemical analysis of fetal and neonatal specimens from 12.5-day embryos (E12.5), to 42-day postnatal (P42) rats. CgA immunostaining was first detected in endocrine cells of the pancreas, stomach, intestine, adrenal gland and thyroid at E13.5, E14.5, E15.5, E15.5 and E18.5, respectively. PST-like immunoreactivity was detected in endocrine cells of the pancreas at E13.5, stomach, intestine at E15.5, adrenal gland at E17.5 and thyroid at E18.5. WE-14 immunoreactivity was first observed in the immature pancreas at E15.5, mucosal cells of the stomach at E15.5, scattered chromaffin cells in the immature adrenal gland and mucosal cells of the intestine at E17.5 and thyroid parafollicular cells at E18.5. These data confirm that the translation of the CgA gene is regulated differentially in various neuroendocrine tissues and, moreover, suggests that the posttranslational processing of the molecule is developmentally controlled. Accepted: 18 October 1996  相似文献   

4.
VIP-like immunoreactivity was found in nerve fibres in all layers of the gut wall in both stomach and intestine, and was abundant in the myenteric and submucous plexuses. A few fibres were associated with blood vessels. Nerve cells showing VIP-like immunoreactivity were found in the myenteric plexus. Neurotensin-like immunoreactivity was found in nerve cells and numerous nerve fibres in the myenteric plexus of both stomach and intestine and in nerve fibres of the circular muscle layer, while bombesin-like immunoreactivity was confined to a low number of nerve fibres in the myenteric plexus of the stomach. The results indicate that a VIP-like, a neurotensin-like and a bombesin-like peptide are present in neurons of the gut of Lepisosteus.  相似文献   

5.
Summary Pancreatic spasmolytic polypeptide (PSP) is a peptide that is isolated from the porcine pancreas and that affects intestinal motility and growth of intestinal tumour cells in vitro. The peptide was recently demonstrated to be present in large amounts in pancreatic juice. The cellular origin of the peptide, however, is largely unclarified and the localization was therefore studied of PSP in pigs using immunohistochemistry. Positive immunoreactions were seen in the pancreas, the stomach, the duodenum, the jejunum and the ileum. In the pancreas, the PSP immunoreaction was seen in all acinar cells; no immunoreaction was seen in the endocrine islets. In the stomach, it was localized to the mucous cells of the glands in the cardiac gland region, the corpus and the pylorus. In the duodenum a strong immunoreaction was present in Brunner's glands and in the cells of their excretory ducts. In the jejunum and ileum, PSP immunoreactivity was seen in some of the cells in the epithelium of the crypts of Lieberkühn. A peptide chromatographically identical to highly purified PSP was identified in pancreas and stomach extracts. Thus epithelial cells in all parts of the stomach and small intestine contribute to the supply of PSP to the gut lumen.  相似文献   

6.
Pancreatic spasmolytic polypeptide (PSP) is a peptide that is isolated from the porcine pancreas and that affects intestinal motility and growth of intestinal tumour cells in vitro. The peptide was recently demonstrated to be present in large amounts in pancreatic juice. The cellular origin of the peptide, however, is largely unclarified and the localization was therefore studied of PSP in pigs using immunohistochemistry. Positive immunoreactions were seen in the pancreas, the stomach, the duodenum, the jejunum and the ileum. In the pancreas, the PSP immunoreaction was seen in all acinar cells; no immunoreaction was seen in the endocrine islets. In the stomach, it was localized to the mucous cells of the glands in the cardiac gland region, the corpus and the pylorus. In the duodenum a strong immunoreaction was present in Brunner's glands and in the cells of their excretory ducts. In the jejunum and ileum, PSP immunoreactivity was seen in some of the cells in the epithelium of the crypts of Lieberkühn. A peptide chromatographically identical to highly purified PSP was identified in pancreas and stomach extracts. Thus epithelial cells in all parts of the stomach and small intestine contribute to the supply of PSP to the gut lumen.  相似文献   

7.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

8.
We used sequencing and phylogenetic analysis of PCR-amplified 16S rRNA genes from bacteria that are associated with the esophagus/pharynx, stomach and intestine of two marine sympatric invertebrates but with different feeding mechanisms, namely the sea urchin Paracentrotus lividus (grazer) and the ascidian Microcomus sp. (suspension feeder). Amplifiable DNA was retrieved from all sections except the pharynx of the ascidian. Based on the inferred phylogeny of the retrieved sequences, the sea urchin’s esophagus is mainly characterized mostly by bacteria belonging to α-, γ-Proteobacteria and Bacteriodetes, most probably originating from the surrounding environment. The stomach revealed phylotypes that belonged to γ- and δ-Proteobacteria, Verrucomicrobia and Fusobacteria. Since the majority of their closest relatives are anaerobic species and they could be putative symbionts of the P. lividus stomach, in which anaerobic conditions also prevail. Seven out of eight phylotypes found in the sea urchin’s intestine belonged to sulfate reducing δ-Proteobacteria, and one to γ-Proteobacteria, with possible nutritional activities, i.e. degradation of complex organic compounds which is beneficial for the animal. The bacterial phylotypes of the ascidian digestive tract belonged only to the phyla of Actinobacteria and Proteobacteria. The stomach phylotypes of the ascidian were related to pathogenic bacteria possibly originating from the water column, while the intestine seemed to harbour putative symbiotic bacteria that are involved in the degradation of nitrogenous and other organic compounds, thus assisting ascidian nutrition. The text was submitted by the authors in English.  相似文献   

9.
10.
Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.  相似文献   

11.
Summary Xenopsin (Xp) and xenopsin precursor fragment (XPF) are bioactive peptides derived from a single precursor molecule; both were isolated previously from extracts of Xenopus laevis skin. The present immunohistochemical study was undertaken to determine the specific cellular localization of these two peptides in the skin and also in the gastrointestinal tract of adult Xenopus. We report here that Xp-like and XPF-like immuno-reactivities co-exist in the granular glands of the skin and specific granular cells in the lower esophagus and stomach. However, only Xp-like immunoreactivity, not XPF-like immunoreactivity, was detected in tall, thin cells of the duodenum and in club-shaped cells of the large intestine. The immunochemical co-localization of the two peptides in specific cells of the skin, lower esophagus and stomach suggests that the same gene is expressed in each of these cells, and that the precursor molecule undergoes similar post-translational processing. In contrast, the observation that certain cells of the duodenum and large intestine display only one peptide immunoreactivity suggests an alternative phenomenon, possibly involving selective peptide accumulation or expression of a different gene.  相似文献   

12.
In this study, a novel avian β-defensin (AvBD) was isolated from duck pancreas. The complete nucleotide sequence of the gene contained an 195 bp open reading frame encoding 64 amino acids. Homology, characterization and comparison of the gene with AvBD from other avian species confirmed that it was duck AvBD2. The mRNA expression of the gene was analyzed in 17 tissues from 21-day-old ducks. AvBD2 was highly expressed in the trachea, crop, heart, bone marrow, and pancreas; moderately expressed in the muscular stomach, small intestine, kidney, spleen, thymus, and bursa of Fabricius; and weakly expressed in skin. We produced and purified recombinant AvBD2 by expressing the gene in Escherichia coli. As expected, the recombinant peptide exhibited strong bactericidal properties against Bacillus cereus, Staphylococcus aureus, and Pasteurella multocida, and weak bactericidal properties against E. coli and Salmonella choleraesuis. In addition, the recombinant protein retained antimicrobial activity against S. aureus under different temperatures (range, −20°C to 100°C) and pH values (range, 3 to 12)  相似文献   

13.
Ghrelin, a novel peptide isolated from stomach tissue of rats and humans, has been identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In addition to its secretion from the stomach, ghrelin is also expressed in the hypothalamic arcuate nucleus, intestine, kidney, placenta, and pancreas. GHS-R mRNA, on the other hand, is expressed in the hypothalamus, pituitary, heart, lung, liver, pancreas, stomach, intestine, and adipose tissue. Ghrelin is considered to have important roles in feeding regulation and energy metabolism as well as in the release of growth hormone (GH). Recent physiological experiments on the pancreas have shown that ghrelin regulates insulin secretion. However, sites of action of ghrelin in the pancreas are yet to be identified. In this study, to gain insight into the role of ghrelin in rat pancreatic islets, we used immunohistochemistry to determine the localization of ghrelin and GHS-R in islet cells. Double fluorescence immunohistochemistry revealed that weak GHS-R-like immunoreactivity was found in B cells containing insulin. GHS-R immunoreactivity overlapped that of glucagon-like immunoreactive cells. Moreover, both ghrelin and GHS-R-like immunoreactivities were detected mostly in the same cells in the periphery of the islets of Langerhans. These observations suggest that ghrelin is synthesized and secreted from A cells, and acts back on A cells in an autocrine and/or paracrine manner. In addition, ghrelin may act on B cells via GHS-R to regulate insulin secretion.  相似文献   

14.
The Argentine hake Merluccius hubbsi is an important fishery resource of the Southwestern Atlantic Ocean and it is also a potential species for cultivation. In this work, the digestive system development in field-caught hake larvae was studied using histological and histochemical approaches. The digestive tract of larvae was divided into: oropharyngeal cavity (OPC), esophagus, stomach (that develops in the preflexion stage), and intestine. The annexed digestive glands consisted of the liver and the exocrine pancreas. At the beginning of the preflexion stage, teeth were developed in the OPC. There were mucous cells in the esophagus secreting different glycoconjugates from hatching. The enterocytes in the posterior intestine exhibited supranuclear vesicles associated with protein absorption. Mucous cells were observed in the posterior intestine in the preflexion stage and, in the anterior region, ending the flexion stage. Each type of glycoconjugates has a specific role. Acidic mucins lubricate and protect from mechanical damage, sialomucines protect from bacterial infections and neutral mucins regulate the acidity of mucus secretion, protect against abrasion and participate in the formation of the chyme, indicating a pregastric digestion. The liver was present since hatching with pancreatic tissue inside and increased in size acquiring the typical structure with hepatocyte cords, sinusoids, vacuoles, and hepatic duct. The hepatocytes vacuolization increased with larval development. The pancreas became extra-hepatic, with basophilic acinar cells and acidophilic zymogen granules. Throughout the ontogeny, the increased structural and functional complexity of the digestive system reflected the transition to exogenous feeding and nutritional increasing needs.  相似文献   

15.
The wide-ranging expression of glutamate receptors in peripheral tissues suggests an unexpectedly wider role(s) of l-glutamate as an intercellular signaling molecule. However, the peripheral glutamatergic system is poorly understood, partly because the sites of l-glutamate signal appearance are less well characterized. Vesicular glutamate transporters (VGLUTs) are potential probes for the sites of vesicular storage and subsequent secretion of l-glutamate. In this study we raised specific polyclonal antibodies against two VGLUT isoforms, VGLUT1 and VGLUT2, and investigated their localization in peripheral tissues of rat. We detected the expression of either VGLUT1 or VGLUT2, or both, in pancreas, stomach, intestine, and testis. In pancreas, VGLUT1 and VGLUT2 are present in pancreatic polypeptide-containing secretory granules in F-cells in the islets of Langerhans. In stomach, VGLUT2 is abundant in the antrum and pylorus and is present in a subset of pancreatic polypeptide-containing cells. In intestine, VGLUT2 is abundant in the ileum and is co-localized with glucagon-like immunoreactive peptide and polypeptide YY (PYY). In testis, VGLUT2 is expressed and localized in the outer acrosomal membrane of spermatids, where KA1 and GluR5, kainate receptor subunits, are almost always localized. Taken together, these results strongly suggest the occurrence of a peripheral glutamatergic system in the gastroenteropancreatic system and testis.  相似文献   

16.
The digestive system of teleost shows remarkable functional and morphological diversity. In this study, the digestive tract and accessory organs of dourado Salminus brasiliensis are characterized using anatomical, histological, histochemical and immunohistochemical analyses. The existence of taste buds bordered by microridges in the oesophagus of dourado was recorded for the first time, thus showing that the species drives food intake by either swallowing or rejecting the food item. The Y-shaped stomach of dourado consisted of cardiac, cecal and pyloric regions with tubular gastric glands registered solely in the cardiac and cecal segments. The intestine is a short N-shaped tube with two loops, an intestinal coefficient of 0.73. The structure of pyloric caeca is similar to that of the intestine wall, comprising tunica mucosa, tela submucosa, tunica muscularis and tunica serosa layers. Histochemical analyses revealed an increased incidence of goblet cells from the midgut to the hindgut segment. A well-developed enteric plexus of scattered nerve cell and fibres are found along the digestive tract, and the calcitonin gene-related peptide (CGRP) immunoreactive neurons and fibres were identified in the myenteric plexus from the oesophagus to the hindgut. The exocrine pancreas appears diffuse in the mesentery around the stomach, intestine and also reaches the liver, and the endocrine pancreas is organized as a few islets of Langerhans. The liver comprises three distinct, asymmetric lobes, and the portal triad arrangement was registered in this tissue.  相似文献   

17.
Various studies address the morphology of the gastrointestinal tracts (GITs) of insectivorous bat species. However, detailed morphometric studies including mucin histochemistry are scarce. This study compares various GIT measurements as well as the quantification of intestinal mucin secreting cells in four insectivorous bat species representing four different families of Chiroptera. Alcian blue/Periodic acid Schiff's stain was used to differentiate between acid and neutral mucin-secreting cells while the Aldehyde fuchsin/Alcian blue stain further differentiated between two acid mucins, namely sialo-, and sulphomucins. The number of cells was quantified and statistically analysed. All species had a simple GIT morphology represented by a simple, completely glandular stomach and the absence of a cecum. The exception was R. hardwickii, where a small cecum was observed which had histological mucosal features of both the small and large intestine. In R.hardwickii, distal to the cecum, typical colonic mucosal features such as the absence of villi and an abundance of goblet cells were observed. In all four species, the total number of goblet cells increased from the proximal to the distal intestinal regions. Mixed (acid and neutral) mucins dominated the entire GIT of all species. Neutral mucin-secreting cells were observed in the gastric pylorus and proximal intestinal regions in all species. Brunner's glands stained positive for neutral mucins. Exclusively acid mucin-secreting cells were seen in the distal intestinal regions of all species except N. thebaica. Sulphomucin-secreting cells were the most prominent acid mucin cell-type towards the distal intestine. The distribution of different mucin secreting cells indirectly provides information regarding the quality of the intestinal biofilm in the species studied.  相似文献   

18.
Summary Twenty to twenty-two days postcoitum mouse fetal pancreas organ bits were cultured on the dermal surface of irradiated pigskin as a substrate. The medium used for long term culture consisted of Eagle’s Minimum Essential Medium with the addition of 10% bovine serum, 0.02 U/ml insulin, 0.025 μg/ml glucagon, 3.63 μg/ml hydrocortisone, 100 μg/ml soybean trypsin inhibitor or 10−8 M atropine. When the medium lacked trypsin inhibitor or atropine but contained the three hormones, the pigskin support began to be destroyed after 2 to 4 wk in culture. Thereafter, the cultured cells could not grow and survive on the digested pigskin. When 10−6 M atropine was added to the medium, amylase secretion from cultured cells and destruction of pigskin were inhibited completely but pancreas cells could not grow or survive. In contrast, 100 μg/ml soybean trypsin inhibitor or 10−8 M atropine permitted cell growth, permitted amylase secretion from the cultured acinar cells, and prevented the destruction of pigskin. Under these conditions pancreas cells migrated or grew or both from the organ bits onto the surface of the pigskin dermis and organoid aggregations formed. Hydrocortisone was needed to permit growth for more than 2 wk. Glucagon and insulin had additive effects. Light and electron microscopic observations indicated the culture of at least five kinds of cells, i.e., duct, acinar, centroacinar, endocrine, and mesenchymal. The majority of cultured cells were duct cells and acinar cells. There were few mesenchymal cells. Mouse pancreas cells were cultured for at least 12 wk by this method. This investigation was supported by PHS Grant CA 30220 awarded by the National Cancer Institute, DHHS, Grant 1203M awarded by the Council for Tobacco Research, Inc., and Grant RD-65 (for equipment) awarded by the American Cancer Society. Nude mice were provided by Dr. Wendall M. Farrow of Life Sciences, Inc., Resource Laboratory N01, CP6-1005 of the National Cancer Institute.  相似文献   

19.
The morphology and topographic distribution of somatostatin-immunoreactive cells in the stomach and small intestine of the frog Rana esculenta were studied at the light-microscopic level by the use of the peroxidase-antiperoxidase method. Scattered immunostained cells occurred in all regions of the gastrointestinal tract investigated. In the small intestine, the number of these cells decreased gradually in the oral to anal direction, i.e. from the pyloric (antral) stomach to the entrance into the colon. Most of the immunostained cells possessed thick, short cytoplasmic processes, which did not display a preferential spatial orientation. Other somatostatin-immunoreactive cells, which were exclusively located in the small intestine, gave rise to a single long extension oriented toward the lumen. In both stomach and small intestine, a complete penetration of the epithelial surface by these processes of somatostatin-immunoreactive cells was observed only occasionally. The morphological features of the somatostatin-immunostained cells speak in favor of endocrine, paracrine, and possibly also intraluminal secretory functions of the enteroendocrine somatostatin system in frogs.Fellow of the Alexander von Humboldt Foundation, Bonn, Germany  相似文献   

20.
c-kit immunohistochemistry was performed on unfixed frozen sections of human small (duodenum, jejunum, and ileum) and large intestine (ascending, transverse, descending, and sigmoid colon). The c-kit immunoreactive cells in the muscularis externa of the intestinal wall were identified as interstitial cells of Cajal (ICC) and mast cells. ICC were identified by their morphology, localization, and organization based on previous light and electron microscopic studies. In the small intestine, ICC were located primarily in relation to the myenteric plexus of Auerbach, but also in septa between circular muscle lamellae. In the large intestine, ICC were seen in relation to Auerbach’s plexus, but also and in great numbers in the circular muscle layer and in teniae of the longitudinal muscle layer. The morphology of the ICC was similar in the small and large intestine, but the pattern of distribution was obviously different. c-kit immunoreactive mast cells were found predominantly in the inner part of the circular muscle layer. The anti-c-kit method is found to be an easy and reliable method to study at least most of the interstitial cells of Cajal and thereby contribute to further normal and pathological studies. Accepted: 31 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号