首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The regulatory link between biosynthesis of Bacillus intermedius subtilisin-like serine proteinase and nitrogen metabolism in B. intermedius cells was determined. The level of the enzyme biosynthesis by the recombinant strain of Bacillus subtilis in the medium containing ammonium ions was three- to fivefold less than that in the medium with poorly utilized sodium nitrate. Accumulation of glutamyl endopeptidase in a culture liquid of this microorganism did not depend on the source of nitrogen present in the medium. During cultivation in the rich medium, the productivity of subtilisin-like proteinase in the recombinant B. subtilis strain carrying a mutation in the NrgB sensor protein was demonstrated to increase threefold compared to that of the control strain. In the minimal culture medium, mutation in the nrgB gene abolished the effect of a nitrogen source on the level of the subtilisin-like proteinase gene expression. At the same time, this mutation did not affect glutamyl endopeptidase biosynthesis. Thus, expression of the gene coding for subtilisin-like proteinase from B.intermedius is suggested to be positively regulated by the regulatory system of nitrogen metabolism.  相似文献   

8.
9.
Effects of glucose, ammonium ions and phosphate on avilamycin biosynthesis in Streptomyces viridochromogenes AS4.126 were investigated. Twenty grams per liter of glucose, 10 mmol/L ammonium ions, and 10 mmol/L phosphate in the basal medium stimulated avilamycin biosynthesis. When the concentrations of glucose, ammonium ions, and phosphate in the basal medium exceeded 20 g/L, 10 mmol/L, and 10 mmol/L, respectively, avilamycin biosynthesis greatly decreased. When 20 g/L glucose was added at 32 h, avilamycin yield decreased by 70.2%. Avilamycin biosynthesis hardly continued when 2-deoxy-glucose was added into the basal medium at 32 h. There was little influence on avilamycin biosynthesis with the addition of the 3-methyl-glucose (20 g/L) at 32 h. In the presence of excess (NH4)2SO4 (20 mmol/L), the activities of valine dehydrogenase and glucose-6-phosphate dehydrogenase were depressed 47.7 and 58.3%, respectively, of that of the control at 48 h. The activity of succinate dehydrogenase increased 49.5% compared to the control at 48 h. The intracellular adenosine triphosphate level and 6-phosphate glucose content of S. viridochromogenes were 128 and 129%, respectively, of that of the control at 48 h, with the addition of the 40 mmol/L of KH2PO4. As a result, high concentrations of glucose, ammonium ions, and inorganic phosphate all led to the absence of the precursors for avilamycin biosynthesis and affected antibiotic synthesis.  相似文献   

10.
11.
Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.  相似文献   

12.
Cultivating Vitis vinifera cell suspensions in a production medium which is characterized by high sucrose and low nitrate concentrations (132 mM and 6.25 mM respectively) repressed growth but enhanced the intracellular accumulation of anthocyanins, especially peonidin 3-glucoside. Increasing the ammonium concentration of the production medium from 2 to 8–16 mM increased growth and decreased the accumulation of anthocyanins and peonidin 3-glucoside specifically. Instead, peonidin 3-p-coumaroylglucoside accumulated. At 24 mM ammonium concentration, growth was inhibited and accumulation of peonidin 3-p-coumaroylglucoside was significant (p<0.05) and represented 42% of total anthocyanins after 12 days of culture compared with 19% in the production medium with 2 mM ammonium.Contribution Number 217.  相似文献   

13.
14.
To prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.1 g/l GA during 4 d of incubation without DHA accumulation.  相似文献   

15.
【目的】研究黄脂菌素产生菌灰黄链霉菌中编码ArsR家族转录调控蛋白(Arsenical resistance regulator)的xanR3基因的功能。【方法】利用大肠杆菌和链霉菌双亲本接合转移的方法,构建xanR3基因缺失突变株及回补突变株。利用cDNA在相邻同方向的基因间隔区进行PCR确定黄脂菌素生物合成基因簇中的转录单元。利用荧光定量RT-PCR方法进行突变株中黄脂菌素生物合成基因簇转录水平的检测。【结果】对得到的xanR3基因缺失突变株及回补突变株进行发酵,发现xanR3基因缺失突变株产黄脂菌素能力下降,回补菌株中黄脂菌素产量相比缺失突变株有一定程度的恢复,但仍未达到野生型水平。经鉴定,黄脂菌素生物合成基因簇中共有18个共转录单元,其中4个共转录单元在?xanR3突变株中转录水平明显下降。【结论】ArsR家族转录调控基因xanR3是黄脂菌素生物合成的正调控基因。  相似文献   

16.
Summary A defined medium containing glucose and ammonium as the sole carbon and nitrogen sources was developed to support growth and streptonigrin production. In this defined medium, increased initial levels of ammonium resulted in increased growth suggesting that nitrogen is the growth limiting nutrient. In some cases, increased initial ammonium levels resulted in decreased specific streptonigrin productivity, suggesting that nitrogen regulatory mechanisms may adversely affect streptonigrin biosynthesis. This suggestion that nitrogen regulation adversely affects antibiotic biosynthesis is further supported by results from two studies in which the ammonium supply to the cells was controlled. In the first study, streptonigrin productivity and final titer were enhanced by the addition of an ammonium trapping agent. In the second experiment, when ammonium chloride was fed slowly throughout the course of cultivation, the production phase was lengthened and the maximum antibiotic concentration was enhanced compared to the batch controls containing either the same initial or the same total ammonium chloride levels. Although our results indicate streptonigrin production may be subject to nitrogen regulatory mechanisms, the effect of nitrogen on streptonigrin production cannot be strictly correlated to the extracellular ammonium concentration. In fact, we observed that when ammonium was depleted from the medium, streptonigrin production ceased.  相似文献   

17.
The bkdAB gene cluster, which encodes plausible E1 and E2 components of the branched-chain α-keto acid dehydrogenase (BCDH) complex, was isolated from Streptomyces virginiae in the vicinity of a regulatory island for virginiamycin production. Gene disruption of bkdA completely abolished the production of virginiamycin M (a polyketide-peptide antibiotic), while the production of virginiamycin S (a cyclodepsipeptide antibiotic) was unaffected. Complementation of the bkdA disruptant by genome-integration of intact bkdA completely restored the virginiamycin M production, indicating that the bkdAB cluster is essential for virginiamycin M biosynthesis, plausibly via the provision of isobutyryl-CoA as a primer unit. In contrast to a feature usually seen in the Streptomyces E1 component, namely, the separate encoding of the α and β subunits, S. virginiae bkdA seemed to encode the fused form of the α and β subunits, which was verified by the actual catalytic activity of the fused protein in vitro using recombinant BkdA overexpressed in Escherichia coli. Supply of an additional bkdA gene under the strong and constitutive promoter ermE* in the wild-type strain of S. virginiae resulted in enhanced production of virginiamycin M, suggesting that the supply of isobutyryl-CoA is one of the rate-limiting factors in the biosynthesis of virginiamycin M.  相似文献   

18.
We have expressed the pqqABCDE gene cluster from Gluconobacter oxydans, which is involved in pyrroloquinoline quinone (PQQ) biosynthesis, in Escherichia coli, resulting in PQQ accumulation in the medium. Since the gene cluster does not include the tldD gene needed for PQQ production, this result suggests that the E. coli tldD gene, which shows high homology to the G. oxydans tldD gene, carries out that function. The synthesis of PQQ activated d-glucose dehydrogenase in E. coli and the growth of the recombinant was improved. In an attempt to increase the production of PQQ, which acts as a vitamin or growth factor, we transformed E. coli with various recombinant plasmids, resulting in the overproduction of the PQQ synthesis enzymes and, consequently, PQQ accumulation—up to 6 mM—in the medium. This yield is 21.5-fold higher than that obtained in previous studies.  相似文献   

19.
20.
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation. Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced 1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g g−1 glucose) with a chiral purity greater than 99.5% l-alanine. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号