首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background and Aims

In the sexually deceptive Ophrys genus, species isolation is generally considered ethological and occurs via different, specific pollinators, but there are cases in which Ophrys species can share a common pollinator and differ in pollen placement on the body of the insect. In that condition, species are expected to be reproductively isolated through a pre-mating mechanical barrier. Here, the relative contribution of pre- vs. post-mating barriers to gene flow among two Ophrys species that share a common pollinator and can occur in sympatry is studied.

Methods

A natural hybrid zone on Sardinia between O. iricolor and O. incubacea, sharing Andrena morio as pollinator, was investigated by analysing floral traits involved in pollinator attraction as odour extracts both for non-active and active compounds and for labellum morphology. The genetic architecture of the hybrid zone was also estimated with amplified fragment length polymorphism (AFLP) markers, and pollination fitness and seed set of both parental species and their hybrids in the sympatric zone were estimated by controlled crosses.

Key Results

Although hybrids were intermediate between parental species in labellum morphology and non-active odour compounds, both parental species and hybrids produced a similar odour bouquet for active compounds. However, hybrids produced significantly lower fruit and seed set than parental species, and the genetic architecture of the hybrid zone suggests that they were mostly first-generation hybrids.

Conclusions

The two parental species hybridize in sympatry as a consequence of pollinator overlap and weak mechanical isolation, but post-zygotic barriers reduce hybrid frequency and fitness, and prevent extensive introgression. These results highlight a significant contribution of late post-mating barriers, such as chromosomal divergence, for maintaining reproductive isolation, in an orchid group for which pre-mating barriers are often considered predominant.Key words: AFLP markers, floral scent variation, hybrid zone, hybrid fitness, Ophrys iricolor, Ophrys incubacea, reproductive isolation, sexual deception  相似文献   

2.
Ophrys orchids mimic the female sex pheromones of their pollinator species to attract males for pollination. Reproductive isolation in Ophrys is based on the selective attraction of only a single pollinator species. A change of floral odour can result in the attraction of a new pollinator species that acts as an isolation barrier towards other sympatrically occurring Ophrys species. Ophrys lupercalis, Ophrys bilunulata, and Ophrys fabrella grow sympatrically and bloom consecutively on Majorca and are pollinated by three species of Andrena. We investigated variation of phenotypic and genotypic flower traits, aiming to study the role of the floral odour for reproductive isolation and speciation. Using chemical and electrophysiology (gas chromatography coupled with an electroantennographic detector) methods, we show that the three Ophrys species use the same odour compounds for pollinator attraction, but in different proportions. A comparison of the floral odour bouquets in a multivariate analysis revealed a clear grouping of plants from the same species, although with an overlap between species. A comparison of the same plants using molecular markers gave a contrasting result. Although O. lupercalis and O. fabrella were genetically well separated, plants of O. bilunulata did not form a distinct group but were similar to either O. lupercalis or O. fabrella. Our data indicate gene flow and hybridization to occur between O. bilunulata and O. lupercalis as well as between O. bilunulata and O. fabrella. All plants of O. bilunulata, despite having different genotypes, showed a very similar floral odour. This reflects a strong selective pressure by the pollinating males. The overlap of genotypes of O. bilunulata and O. fabrella supports our hypothesis that O. fabrella diverged from O. bilunulata by scent variation and the attraction of a new pollinator species, Andrena fabrella. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 439–451.  相似文献   

3.
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping‐by‐sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo‐pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the ‘speciation continuum’.  相似文献   

4.

Background and Aims

The events leading to speciation are best investigated in systems where speciation is ongoing or incomplete, such as incipient species. By examining reproductive barriers among incipient sister taxa and their congeners we can gain valuable insights into the relative timing and importance of the various barriers involved in the speciation process. The aim of this study was to identify the reproductive barriers among sexually deceptive orchid taxa in the genus Chiloglottis.

Methods

The study targeted four closely related taxa with varying degrees of geographic overlap. Chemical, morphological and genetic evidence was combined to explore the basis of reproductive isolation. Of primary interest was the degree of genetic differentiation among taxa at both nuclear and chloroplast DNA markers. To objectively test whether or not species boundaries are defined by the chemistry that controls pollinator specificity, genetic analysis was restricted to samples of known odour chemistry.

Key Results

Floral odour chemical analysis was performed for 600+ flowers. The three sympatric taxa were defined by their specific chiloglottones, the semiochemicals responsible for pollinator attraction, and were found to be fully cross-compatible. Multivariate morphometric analysis could not reliably distinguish among the four taxa. Although varying from very low to moderate, significant levels of genetic differentiation were detected among all pairwise combinations of taxa at both nuclear and chloroplast loci. However, the levels of genetic differentiation were lower than expected for mature species. Critically, a lack of chloroplast DNA haplotype sharing among the morphologically indistinguishable and most closely related taxon pair confirmed that chemistry alone can define taxon boundaries.

Conclusions

The results confirmed that pollinator isolation, mediated by specific pollinator attraction, underpins strong reproductive isolation in these taxa. A combination of large effective population sizes, initial neutral mutations in the genes controlling floral scent, and a pool of available pollinators likely drives diversity in this system.  相似文献   

5.
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n‐alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species‐specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator‐mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two‐locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator‐mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator‐driven ecological speciation.  相似文献   

6.
We investigated patterns of volatiles of several allopatric and sympatric species of the Ophrys fusca group and one species of the O. mammosa/sphegodes group pollinated by either Andrena nigroaenea or A. flavipes, using electrophysiology (gas chromatography coupled with electroantennography; GC-EAD) and chemical analyses. We found 52 GC-EAD active compounds, mainly saturated and unsaturated hydrocarbons with chain lengths of 21 to 31, aldehydes, an ester, and an acid. Based on the relative proportions of all GC-EAD active compounds, the investigated species were compared using various statistical methods (ANOVA, principle component analyses, discriminant function analyses and cluster analyses). Our results show that Ophrys species with the same pollinator – independent of their phylogenetic relationship–use the same volatiles for pollinator attraction. Differences between the species mainly involve different quantitative patterns of volatiles. Our results are in congruence with previous studies that showed different odour bouquets to be responsible for the specific attraction of different pollinators and that alkanes and alkenes are most important for pollinator attraction.  相似文献   

7.
  • Sexually deceptive orchid species from the Mediterranean genus Ophrys usually interact with one or a few pollinator species by means of specific floral scents. In this study, we investigated the respective role of pollinator‐mediated selection and phylogenetic constraints in the evolution of floral scents in the section Pseudophrys.
  • We built a phylogenetic tree of 19 Pseudophrys species based on three nuclear loci; we gathered a dataset on their pollination interactions from the literature and from our own field data; and we extracted and analysed their floral scents using solid phase microextraction and gas chromatography‐mass spectrometry. We then quantified the phylogenetic signal carried by floral scents and investigated the link between plant–pollinator interactions and floral scent composition using phylogenetic comparative methods.
  • We confirmed the monophyly of the section Pseudophrys and demonstrated the existence of three main clades within this section. We found that floral scent composition is affected by both phylogenetic relationships among Ophrys species and pollination interactions, with some compounds (especially fatty acid esters) carrying a significant phylogenetic signal and some (especially alkenes and alkadienes) generating dissimilarities between closely related Pseudophrys pollinated by different insects.
  • Our results show that in the section Pseudophrys, floral scents are shaped both by pollinator‐mediated selection and by phylogenetic constraints, but that the relative importance of these two evolutionary forces differ among compound classes, probably reflecting distinct selective pressures imposed upon behaviourally active and non‐active compounds.
  相似文献   

8.
Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by‐product of the divergence in pollination systems. However, pollinator‐mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O. sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O. sphegodes population exclusively attracted A. nigroaenea. Significant differences in scent component proportions were identified in O. sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome‐wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O. sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.  相似文献   

9.

Background and Aims

Sexually deceptive orchids of the genus Ophrys use mimicry of pollinator females to attract specific pollinators. Pollinator shifts may drive speciation in Ophrys, since novel pollinators may in principle act as isolating factors immediately. It is thus possible that evolution of novel species occurs rapidly and with a progenitor–derivative pattern. The aims of this study are to compare genetic structure and diversity among widespread and geographically restricted Ophrys taxa, to test whether genetic structure is associated with specific pollinators, and to investigate whether any widespread species may have acted as a progenitor for the evolution of more restricted taxa.

Methods

Genetic differentiation and diversity were investigated in O. leucadica and O. cinereophila, the two taxa of the Ophrys fusca sensu lato complex widespread in the Aegean, and three geographically restricted taxa from Rhodes, O. attaviria, O. parvula and O. persephonae, all differing in their specific pollinators. This was done using amplified fragment length polymorphism (AFLP) DNA fingerprinting, and sequencing of the low-copy nuclear gene LEAFY (LFY).

Key Results

All taxa were found to be separate genetic entities, with O. leucadica forming two geographic groups from the west and east of the Aegean. Genetic structure was significantly shaped by pollinators and geography, and comparison of sequence and AFLP data revealed ancestral polymorphisms shared among several taxa. Among the sampled taxa, O. leucadica harbours the greatest genetic differentiation and geographic structure, and the highest genetic diversity. Part of the genome of O. parvula, endemic to Rhodes, may be derived from O. leucadica.

Conclusions

Pollinators probably influence the genetic structure of the investigated Ophrys species. The genetic pattern identified is consistent with O. leucadica being the oldest of the sampled taxa, making O. leucadica a candidate progenitor species from which more restricted taxa such as O. parvula may have evolved.  相似文献   

10.

Background  

Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemical mimicry. Here we investigate the evolution of these key compounds within Orchidinae by mapping their production in flowers of selected species onto their estimated phylogeny.  相似文献   

11.
The European genus Ophrys (Orchidaceae) is famous for its insect‐like floral morphology, an adaptation for a pseudocopulatory pollination strategy involving Hymenoptera males. A large number of endemic Ophrys species have recently been described, especially within the Mediterranean Basin, which is one of the major species diversity hotspots. Subtle morphological variation and specific pollinator dependence are the two main perceptible criteria for describing numerous endemic taxa. However, the degree to which endemics differ genetically remains a challenging question. Additionally, knowledge regarding the factors underlying the emergence of such endemic entities is limited. To achieve new insights regarding speciation processes in Ophrys, we have investigated species boundaries in the Fly Orchid group (Ophrys insectifera sensu lato) by examining morphological, ecological and genetic evidence. Classically, authors have recognized one widespread taxon (O. insectifera) and two endemics (O. aymoninii from France and O. subinsectifera from Spain). Our research has identified clear morphological and ecological factors segregating among these taxa; however, genetic differences were more ambiguous. Insights from cpDNA sequencing and amplified fragment length polymorphisms genotyping indicated a recent diversification in the three extant Fly Orchid species, which may have been further obscured by active migration and admixture across the European continent. Our genetic results still indicate weak but noticeable phylogeographic clustering that partially correlates with the described species. Particularly, we report several isolated haplotypes and genetic clusters in central and southeastern Europe. With regard to the morphological, ecological and genetic aspects, we discuss the endemism status within the Fly Orchid group from evolutionary, taxonomical and conservation perspectives.  相似文献   

12.
  • Heat and odour production can have profound effects on pollination in cycads. It is therefore expected that these traits would co‐vary geographically with pollinator assemblages. Such intraspecific variation, may lead to the evolution of pollination ecotypes, which can be an early stage of pollinator‐mediated speciation.
  • We measured cone temperatures using miniature temperature data loggers and examined the composition of cone volatile odours using headspace sampling and analysis with gas chromatography‐mass spectrometry in four populations spanning the range of the African cycad Encephalartos ghellinckii. Pollinator assemblages were also investigated in three populations.
  • Male and female cones were thermogenic at pollen shed and receptive stages, respectively, but patterns of thermogenesis did not vary among populations. Scent emissions from cones in populations in the Drakensberg Mountains were characterised by cis‐β‐ocimene, β‐myrcene and (3E)‐1,3‐octadiene, while camphene and α‐pinene were characteristic of scent emissions from cones in populations closer to the coast. These differences in volatile blends corresponded with differences in insect assemblages.
  • These results confirm intraspecific variation in volatile emissions of E. ghellinckii and support the predictions that intraspecific variation in volatile emissions will be associated with shifts in pollinator assemblages. While further work needs to be done to test for local adaptation in this system, this preliminary evidence is consistent with the formation of pollination ecotypes in the E. ghellinckii species complex.
  相似文献   

13.
Sun HQ  Huang BQ  Yu XH  Kou Y  An DJ  Luo YB  Ge S 《Annals of botany》2011,107(1):39-47

Background and Aims

Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated.

Methods

Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots.

Key Results

The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots.

Conclusions

A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of overlap between the pollinator pools of two species.  相似文献   

14.

Premise

Linum suffruticosum shows variations in pollinator fit, pollen pickup, and local pollinators that predict pollen deposition rates. The species often coflowers with other Linum species using the same pollinators. We investigated whether L. suffruticosum trait variation could be explained by local patterns of pollinator sharing and associated evolution to reduce interspecific pollen transfer.

Methods

Pollinator observations were made in different localities (single species, coflowering with other congeners). Floral traits were measured to detect differences across populations and from coflowering species. Reproductive costs were quantified using interspecific hand pollinations and measures of pollen-tube formation, combined with observations of pollen arrival on stigmas and pollen-tube formation after natural pollination in allopatric and sympatric localities.

Results

The size and identity of the most important pollinator of L. suffruticosum and whether there was pollinator sharing with coflowering species appeared to explain floral trait variation related to pollinator fit. The morphological overlap of the flowers of L. suffruticosum with those of coflowering species varied, depending on coflowering species identity. A post-pollination incompatibility system maintains reproductive isolation, but conspecific pollen-tube formation was lower after heterospecific pollination. Under natural pollination at sites of coflowering with congeners, conspecific pollen-tube formation was lower than at single-species localities.

Conclusions

Trait variation in L. suffruticosum appears to respond to the most important local pollinator. Locally, incomplete pollinator partitioning might cause interspecific pollination, imposing reproductive costs. These reproductive costs may generate selection on floral traits for reduced morphological overlap with coflowering congeners, leading to the evolution of pollination ecotypes.  相似文献   

15.
Do changes in floral odor cause speciation in sexually deceptive orchids?   总被引:8,自引:0,他引:8  
 We investigated differences in floral odor between two sympatric, closely related sexually deceptive orchid species, Ophrys fusca and O. bilunulata, which are specifically pollinated by Andrena nigroaenea and A. flavipes, respectively. We identified biologically active compounds by gas chromatography with electroantennographic detection using antennae of the pollinator bees. Alkanes, alkenes, aldehydes, and farnesyl hexanoate released electroantennographic reactions. The relative amounts of alkanes were mostly the same between the two orchid species, whereas the relative amounts of most alkenes were significantly different. On the grounds of these findings and behavioral experiments conducted in earlier studies, we suggest that the difference in relative amounts of alkenes is responsible for the selective attraction of pollinators in the two orchids. Speciation in this group of Ophrys orchids may be brought about by changes in pattern of alkenes, which lead to attraction of a different pollinator species and therefore reproductive isolation. Received November 22, 2001; accepted February 21, 2002 Published online: November 7, 2002 Addresses of the authors: Florian P. Schiestl* and Manfred Ayasse, Department of Evolutionary Biology, Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna. *Present address: Geobotanical Institute ETH, Zollikerstrasse 107, CH-8008 Zürich. (e-mail: schiestl@geobot.umnw.ethz.ch)  相似文献   

16.
Orchids of the genus Ophrys are pollinated by males of solitary bees and wasps through sexual deception. Flowers mimic the odor of a receptive female and thus attract males that seek to copulate. Visual stimuli have been assumed so far to play only a minor role in male attraction. We investigated the role of the perigon as a potential visual signal in attracting pollinators in the orchid Ophrys heldreichii and its pollinator, the males of the long-horned bee Tetralonia berlandi (Apidae). In contrast to many other Ophrys species, O. heldreichii exhibits a large and bright pinkish perigon that appears visually conspicuous to a human observer. In a dual choice test we presented two flowers from a single plant and counted visitation rates. We then removed the perigon of one flower and retested the relative attractiveness of both flowers. For 292 male visits in ten trials we found a significant decrease of visitation rate for flowers with the perigon removed. In a second experiment we repeated the dual choice test using photos of the flowers. Males also significantly chose the picture of an intact flower over the picture of a modified flower where the perigon was digitally removed. From our data, we conclude that T. berlandi males respond to and are attracted by the bright pink perigon of the orchid in addition to other stimuli. A bright colorful perigon occurs almost only in the Ophrys holoserica-oestrifera group, a large sub-group of the genus. We hypothesize that this kind of visual signal is adaptive particularly in those Ophrys species where the targeted males patrol resourced-based encounter sites and strongly rely on their visual system while searching for their females.  相似文献   

17.

Premise

Animal-pollinated plants face a high risk of pollen loss during its transfer. To limit the negative effect of pollen losses by pollen consumption and heterospecific transfer, plant species may adjust and stratify their pollen availability during the day (i.e., “schedule” their pollen presentation) and attract pollinators in specific time frames.

Methods

We investigated diurnal patterns of pollen availability and pollinator visitation in three coflowering plant species: Succisa pratensis with open flowers and accessible pollen, pollinated mainly by pollen-feeding hoverflies; Centaurea jacea with open flowers and less accessible pollen, pollinated mainly by pollen-collecting bees; and Trifolium hybridum with closed flowers and pollen accessible only after the active opening of the flower, pollinated exclusively by bees.

Results

The three plant species differed in the peak pollen availability, tracked by the visitation activity of their pollinators. Succisa pratensis released all pollen in the morning, while pollinator activity was still low and peaked with a slight delay. In contrast, C. jacea and T. hybridum had distinct pollen presentation schedules, peaking in the early afternoon. The pollinator visitation to both of these species closely matched their pollen availability.

Conclusions

Stratifying pollen availability to pollinators during the day may be one of several mechanisms that allow coflowering plants to share their pollinators and decrease the probability of heterospecific pollen transfer.  相似文献   

18.
Pollinator species are widely accepted as an important factor in plant reproductive isolation. Although mostly investigated in plants visited by different groups of pollinators (e.g., hummingbirds vs bees), few studies have examined the role of pollinators belonging to the same taxonomic group (e.g., only bees) on plant reproductive isolation. In this study, we investigate this question by evaluating pre- and post-zygotic mechanisms putatively involved in the reproductive isolation of two oil-rewarding sympatric Calceolaria species (i.e., Calceolaria filicaulis and C. arachnoidea) in an Andean ecosystem of Chile. We estimated reproductive isolation values using a combination of field (pollinator visitation rates) and experimental (intra and interspecific manual cross-pollination and seed germination of parents and hybrids) evidence. The two Calceolaria species were preferentially visited by different oil-collecting bee species. Results from hand cross-pollination experiments indicate that intraspecific crossings produced significantly more seeds than interspecific ones. Notwithstanding, seed germination essays did not reveal differences between parental and hybrids. Taken together, these results suggest that pollinator species are responsible for most of the reproductive isolation in the two Calceolaria species studied here. This study is the first assessment of pollinator-mediated reproductive isolation in Calceolaria species and the first to document reproductive barriers in oil-rewarding plants.  相似文献   

19.

Background  

Hybridization events are relatively common in vascular plants. However, the frequency of these events is unevenly distributed across the plant phylogeny. Plant families in which individual species are pollinated by specific pollinator species are predicted to be less prone to hybridization than other families. However, exceptions may occur within these families, when pollinators shift host-plant species. Indeed, host shifts are expected to increase the rate of hybridization events. Pollinators of Ficus section Galoglychia are suspected to have changed host repeatedly, based on several cases of incongruence between plant phylogeny and taxonomy, and insect phylogeny and taxonomy. We tracked cyto-nuclear discordance across section Galoglychia as evidence for hybridization. To achieve a proper global view, we first clarified the monophyly of section Galoglychia as it had been questioned by recent phylogenetic studies. Moreover, we investigated if fig size could be a factor facilitating host shifts.  相似文献   

20.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号