首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel forming integral protein of 28 kD (CHIP28) functions as a water channel in erythrocytes, kidney proximal tubule and thin descending limb of Henle. CHIP28 morphology was examined by freeze-fracture EM in proteoliposomes reconstituted with purified CHIP28, CHO cells stably transfected with CHIP28k cDNA, and rat kidney tubules. Liposomes reconstituted with HPLC-purified CHIP28 from human erythrocytes had a high osmotic water permeability (Pf0.04 cm/s) that was inhibited by HgCl2. Freeze-fracture replicas showed a fairly uniform set of intramembrane particles (IMPs); no IMPs were observed in liposomes without incorporated protein. By rotary shadowing, the IMPs had a diameter of 8.5 +/- 1.3 nm (mean +/- SD); many IMPs consisted of a distinct arrangement of four smaller subunits surrounding a central depression. IMPs of similar size and appearance were seen on the P-face of plasma membranes from CHIP28k-transfected (but not mock-transfected) CHO cells, rat thin descending limb (TDL) of Henle, and S3 segment of proximal straight tubules. A distinctive network of complementary IMP imprints was observed on the E-face of CHIP28-containing plasma membranes. The densities of IMPs in the size range of CHIP28 IMPs, determined by non-linear regression, were (in IMPs/microns 2): 2,494 in CHO cells, 5,785 in TDL, and 1,928 in proximal straight tubules; predicted Pf, based on the CHIP28 single channel water permeability of 3.6 x 10(-14) cm3/S (10 degrees C), was in good agreement with measured Pf of 0.027 cm/S, 0.075 cm/S, and 0.031 cm/S, respectively, in these cell types. Assuming that each CHIP28 monomer is a right cylindrical pore of length 5 nm and density 1.3 g/cm3, the monomer diameter would be 3.2 nm; a symmetrical arrangement of four cylinders would have a greatest diameter of 7.2 nm, which after correction for the thickness of platinum deposit, is similar to the measured IMP diameter of approximately 8.5 nm. These results provide a morphological signature for CHIP28 water channels and evidence for a tetrameric assembly of CHIP28 monomers in reconstituted proteoliposomes and cell membranes.  相似文献   

2.
Water rapidly crosses the plasma membranes of red blood cells (RBCs) and renal tubules through highly specialized channels. CHIP28 is an abundant integral membrane protein in RBCs and renal tubules, and Xenopus laevis oocytes injected with CHIP28 RNA exhibit high osmotic water permeability, Pf [Preston et al. (1992) Science 256, 385-387]. Purified CHIP28 from human RBCs was reconstituted into proteoliposomes in order to establish if CHIP28 is itself the functional unit of water channels and to characterize its physiological behavior. CHIP28 proteoliposomes exhibit Pf which is up to 50-fold above that of control liposomes, but permeability to urea and protons is not increased. Like intact RBC, the Pf of CHIP28 proteoliposomes is reversibly inhibited by mercurial sulfhydryl reagents and exhibits a low Arrhenius activation energy. The magnitude of CHIP28-mediated water flux (11.7 x 10(-14) cm3/s per CHIP28) corresponds to the known Pf of intact RBCs. These results demonstrate that CHIP28 protein functions as a molecular water channel and also indicate that CHIP28 is responsible for most transmembrane water movement in RBCs.  相似文献   

3.
The localization and transporting properties of a kidney protein homologous to human erythrocyte protein CHIP28 was evaluated. The cDNA encoding rat kidney protein CHIP28k was isolated from a rat renal cortex cDNA library. A 2.8-kb cDNA was identified which contained an 807 bp open reading frame encoding a 28.8 kD protein with 94% amino acid identity to CHIP28. in vitro translation of CHIP28k cDNA in rabbit reticulocyte lysate generated a 28-kD protein; addition of ER-derived microsomes gave a 32-kD transmembrane glycoprotein. Translation of truncated RNA demonstrated glycosylation of residue Asn42 which is predicted to lie between the first and second transmembrane domains. Expression of in vitro transcribed mRNA encoding CHIP28k in Xenopus oocytes increased oocyte osmotic water permeability (Pf) from (4 +/- 1) x 10(-4) to (33 +/- 4) x 10(-4) cm/s at 10 degrees C; the increase in oocyte Pf was weakly temperature dependent and inhibited by HgCl2. Two- electrode voltage clamp measurements indicated that CHIP28k was not permeable to ions. Oocyte Pf also increased with expression of total mRNA from kidney cortex and papilla; the increase in Pf with mRNA from cortex, but not kidney papilla, was blocked by coinjection with excess antisense CHIP28k cRNA. In situ hybridization of a 150 base cRNA antisense probe to tissue sections from rat kidney showed selective CHIP28k localization to epithelial cells in proximal tubule and thin descending limb of Henle. Pf in purified apical membrane vesicles from rat and human proximal tubule, and in proteoliposomes reconstituted with purified protein, was very high and inhibited by HgCl2; stripping of apical vesicles with N-lauroylsarcosine enriched a 28-kD protein by 25-fold and yielded a vesicle population with high water, but low urea and proton permeabilities. CHIP28k identity was confirmed by NH2- terminus sequence analysis. These results indicate that CHIP28k is a major and highly selective water transporting protein in the kidney proximal tubule and thin descending limb of Henle, but not collecting duct.  相似文献   

4.
Total internal reflection (TIR) microfluorimetry was established as a method to measure continuously the volume of adherent cells and applied to measure membrane permeabilities in cells transfected with water channel homologs. Cytosol was labeled with the membrane-impermeant fluorophore calcein. Fluorescence was excited by the TIR evanescent field in a thin section of cytosol (approximately 150 nm) adjacent to the cell-substrate interface. Because cytosolic fluorophore number per cell remains constant, the TIR fluorescence signal should be inversely related to cell volume. For small volume changes in Sf-9 and LLC-PK1 cells, relative TIR fluorescence was nearly equal to inverse relative cell volume; deviations from the ideal were modeled theoretically. To measure plasma membrane osmotic water permeability, Pf, the time course of osmotically induced cell volume change was inferred from the TIR fluorescence signal. LLC-PK1 cells expressing the CHIP28 water channel had an HgCl2-sensitive, threefold increase in Pf compared to nontransfected cells (Pf = 0.0043 cm/s at 10 degrees C). Solute permeability was measured from the TIR fluorescence time course in response to solute gradients. Glycerol permeability in Sf-9 cells expressing the water channel homolog GLIP was (1.3 +/- 0.2) x 10(-5) cm/s (22 degrees C), greater than that of (0.36 +/- 0.04) x 10(-5) cm/s (n = 4, p < 0.05) for control cells, indicating functional expression of GLIP. Water and urea permeabilities were similar in GLIP-expressing and control cells. The TIR method should be applicable to the study of water and solute permeabilities and cell volume regulation in cells of arbitrary shape and size.  相似文献   

5.
To test the hypothesis that renal tissue contains multiple distinct water channels, mRNA prepared from either cortex, medulla, or papilla of rat kidney was injected into Xenopus oocytes. The osmotic water permeability (Pf) of oocytes injected with either 50 nl of water or 50 nl of renal mRNA (1 microgram/microliter) was measured 4 d after the injection. Pf was calculated from the rate of volume increase on exposure to hyposmotic medium. Injection of each renal mRNA preparation increased the oocyte Pf. This expressed water permeability was inhibited by p-chloromercuriphenylsulfonate and had a low energy of activation, consistent with the expression of water channels. The coinjection of an antisense oligonucleotide for CHIP28 protein, at an assumed > 100-fold molar excess, with either cortex, medulla, or papilla mRNA reduced the expression of the water permeability by approximately 70, 100, and 30%, respectively. Exposure of the oocyte to cAMP for 1 h resulted in a further increase in Pf only in oocytes injected with medulla mRNA. This cAMP activation was not altered by the CHIP28 antisense oligonucleotide. These results suggest that multiple distinct water channels were expressed in oocytes injected with mRNA obtained from sections of rat kidney: (a) CHIP28 water channels in cortex and medulla, (b) cAMP-activated water channels in medulla, and (c) cAMP-insensitive water channels in papilla.  相似文献   

6.
A systematic programme of comparative nuclear magnetic resonance measurements of the membrane permeability for water (Pd) and of activation energy (Ea,d) of this process in red blood cells of various wild, laboratory and domestic animals was carried out here. The RBC from humans, cow, sheep and kangaroos had Pd values around 5·10?3 cm/s at 25 °C, 7 · 10?3 cm/s at 37 °C with Ea,d values around 25 kJ/mol. For RBC from other ten marsupial species and from mouse, rat and rabbit, the Pd values were more than twice as high as for human RBC. For mosr RBC a high value of Pd was associated with a low value of Ea,d (range from 15 to 21 kJ/mol), pointing to specialized channels for water diffusion incorporated in membrane proteins. Recently a channel-forming integral protein of 28 kDa (CHIP 28) was identified as a major water channel protein in the RBC membrane. A procedure for quantitating the purified CHIP 28 by densitometry of silver-stained polyacrylmide gel electrophoreograms was developed. The analysis of a purified fraction of CHIP 28 showed that the 28 kDa component represents approximately two-thirds of the sample with the remainder comprising the glycosylated high-molecular-weight component. A correlation between the content in CHIP 28 and the relative water permeability among RBC from different vertebrate species was attempted.  相似文献   

7.
S T Tsai  R B Zhang  A S Verkman 《Biochemistry》1991,30(8):2087-2092
Erythrocytes from several mammalian species contain mercurial-sensitive water transporters. By a stopped-flow light scattering technique, osmotic water permeability (Pf) was exceptionally high in rabbit erythrocytes (0.053 +/- 0.002 cm/s) and reversibly inhibited by 98% by p-(chloromercuri)benzenesulfonate (pCMBS). The activation energy (Ea) was 4.6 kcal/mol (15-37 degrees C). pCMBS inhibition was half-maximal at 0.1 mM (60-min incubation); at 1 mM pCMBS, half-maximal inhibition occurred in 8 min. Pf was also inhibited by HgCl2 and pCMB with greater than 90% inhibition in 5 min. There was no inhibition by high concentrations of phloretin, DNDS, cytochalasin B, amiloride, ouabain, furosemide, and several proteases. In defolliculated Xenopus oocytes microinjected with 50 nL of water or unfractionated mRNA (1 mg/mL) from rabbit reticulocytes, oocyte Pf assayed at 10 degrees C after 72-h incubation increased from (4 +/- 1) X 10(-4) cm/s (water injected) to (18 +/- 2) X 10(-4) cm/s (mRNA injected). Pf increased linearly with [mRNA] (0-75 ng/oocyte) and was inhibited slowly and reversibly by pCMBS and immediately by HgCl2 but not by cytochalasin B, phloretin, or DNDS. Ea was 9.6 kcal/mol (water injected) and 2.6 kcal/mol (mRNA injected). These results demonstrate that rabbit erythrocytes have the highest Pf and the greatest percentage inhibition of Pf by mercurials of any mammalian erythrocyte studied. The characteristics of the expressed and native water channels were similar, suggesting that the erythrocyte water channel is a membrane protein suitable for expression cloning.  相似文献   

8.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

9.
The sites of water transport along the nephron are well characterized, but the molecular basis of renal water transport remains poorly understood. CHIP28 is a 28-kD integral protein which was proposed to mediate transmembrane water movement in red cells and kidney (Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Science [Wash. DC]. 256:385-387). To determine whether CHIP28 could account for renal epithelial water transport, we used specific polyclonal antibodies to quantitate and localize CHIP28 at cellular and subcellular levels in rat kidney using light and electron microscopy. CHIP28 comprised 3.8% of isolated proximal tubule brush border protein. Except for the first few cells of the S1 segment, CHIP28 was immunolocalized throughout the convoluted and straight proximal tubules where it was observed in the microvilli of the apical brush border and in basolateral membranes. Very little CHIP28 was detected in endocytic vesicles or other intracellular structures in proximal tubules. Uninterrupted, heavy immunostaining of CHIP28 was also observed over both apical and basolateral membranes of descending thin limbs, including both short and long loops of Henle. These nephron sites have constitutively high osmotic water permeabilities. CHIP28 was not detected in ascending thin limbs, thick ascending limbs, or distal tubules, which are highly impermeable to water. Moreover, CHIP28 was not detected in collecting duct epithelia, where water permeability is regulated by antidiuretic hormone. These determinations of abundance and structural organization provide evidence that the CHIP28 water channel is the predominant pathway for constitutive transepithelial water transport in the proximal tubule and descending limb of Henle's loop.  相似文献   

10.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

11.
Vasopressin (VP) increases the water permeability of the toad urinary bladder epithelium by inducing the cycling of vesicles containing water channels to and from the apical membrane of granular cells. In this study, we have measured several functional characteristics of the endosomal vesicles that participate in this biological response to hormonal stimulation. The water, proton, and urea permeabilities of endosomes labeled in the intact bladder with fluorescent fluid-phase markers were measured. The diameter of isolated endosomes labeled with horse-radish peroxidase was 90-120 nm. Osmotic water permeability (Pf) was measured by a stopped-flow fluorescence quenching assay (Shi, L.-B., and A. S. Verkman. 1989. J. Gen. Physiol. 94:1101-1115). The number of endosomes formed when bladders were labeled in the absence of a transepithelial osmotic gradient increased with serosal [VP] (0-50 mU/ml), and endosome Pf was very high and constant (0.08-0.10 cm/s, 18 degrees C). When bladders were labeled in the presence of serosal-to-mucosal osmotic gradient, the number of functional water channels per endosome decreased (at [VP] = 0.5 mU/ml, Pf = 0.09 cm/s, 0 osmotic gradient; Pf = 0.02 cm/s, 180 mosmol gradient). Passive proton permeability was measured from the rate of pH decrease in voltage-clamped endosomes in response to a 1 pH unit gradient (pHin = 7.5, pHout = 6.5). The proton permeability coefficient (PH) was 0.051 cm/s at 18 degrees C in endosomes containing the VP-sensitive water channel; PH was not different from that measured in vesicles not containing water channels. Measurement of urea transport by the fluorescence quenching assay gave a urea reflection coefficient of 0.97 and a permeability coefficient of less than 10(-6) cm/s. These results demonstrate: (a) VP-induced endosomes from toad urinary bladder have extremely high Pf. (b) In states of submaximal bladder Pf, the density of functional water channels in endosomes in constant in the absence of an osmotic gradient, but decreases in the presence of a serosal-to-mucosal gradient, suggesting that the gradient has a direct effect on the efficiency of packaging of water channels into endosomes. (c) The VP-sensitive water channel does not have a high proton permeability. (d) Endosomes that cycle the water channel do not contain urea transporters. These results establish a labeling procedure in which greater than 85% of labeled vesicles from toad urinary bladder are endosomes that contain the VP-sensitive water channel in a functional form.  相似文献   

12.
Osmotic water permeability (Pf) in toad bladder is regulated by the vasopressin (VP)-dependent movement of vesicles containing water channels between the cytoplasm and apical membrane of granular cells. Apical endosomes formed in the presence of serosal VP have the highest Pf of any biological or artificial membrane (Shi and Verkman. 1989. J. Gen. Physiol. 94:1101-1115). We examine here: (a) the influence of protein kinase A and C effectors on transepithelial Pf (Pfte) in intact bladders and on the number and Pf of labeled endosomes, and (b) whether endosome Pf can be modified physically or biochemically. In paired hemibladder studies, Pfte induced by maximal serosal VP (50 mU/ml, 0.03 cm/s) was not different than that induced by 8-Br-cAMP (1 mM), forskolin (50 microM), VP + 8-Br-cAMP, or VP + forskolin. Pf was measured in endosomes labeled in intact bladders with carboxyfluorescein by a stopped-flow, fluorescence-quenching assay using an isolated microsomal suspension; the number and Pf (0.08-0.11 cm/s, 18 degrees C) of labeled endosomes was not different in bladders treated with VP, forskolin, and 8-Br-cAMP. Protein kinase C activation by 1 microM mucosal phorbol myristate acetate (PMA) induced submaximal bladder Pfte (0.015 cm/s) and endosome Pf (0.022 cm/s) in the absence of VP, but had little effect on maximal Pfte and endosome Pf induced by VP. However, PMA increased by threefold the number of apical endosomes with high Pf formed in response to serosal VP. Pf of endosomes containing the VP-sensitive water channel decreased fourfold by increasing membrane fluidity with hexanol or chloroform (0-75 mM); Pf of phosphatidylcholine liposomes (0.002 cm/s) increased 2.5-fold under the same conditions. Endosome Pf was mildly pH dependent, strongly inhibited by HgCl2, but not significantly altered by GTP gamma S, Ca, ATP + protein kinase A, and phosphatase action. We conclude that: (a) water channels cycled in endocytic vesicles are functional and not subject to physiological regulation, (b) VP and forskolin do not have cAMP-independent cellular actions, (c) activation of protein kinase C stimulates trafficking of water channels, but does not increase the number of apical membrane water channels induced by maximal VP, and (d) water channel function is sensitive to membrane fluidity. By using VP and PMA together, large quantities of endosomes containing the VP-sensitive water channel are labeled with fluid-phase endocytic markers.  相似文献   

13.
Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium.  相似文献   

14.
Although the transport properties of human erythrocyte water channels have been well characterized, the identity of the protein(s) mediating water flow remains unclear. Recent evidence that glucose carriers can conduct water raised the possibility that the glucose carrier, which is abundant in human erythrocytes, is the water channel. To test this possibility, water permeabilities and glucose fluxes were measured in large unilamellar vesicles (LUV) containing human erythrocyte lipid alone (lipid LUV), reconstituted purified human erythrocyte glucose carrier (Glut1 LUV), or reconstituted glucose carrier in the presence of other human erythrocyte ghost proteins (ghost LUV). In glucose and ghost LUV, glucose carriers were present at 25% of the density of native erythrocytes, were oriented randomly in the bilayer, and exhibited characteristic inhibition of glucose flux when exposed to cytochalasin B. Osmotic water permeability (Pf, in centimeters per second; n = 4) averaged 0.0012 +/- 0.00033 in lipid LUV, 0.0032 +/- 0.0015 in Glut1 LUV, and 0.006 +/- 0.0014 in ghost LUV. Activation energies of water flow for the three preparations ranged between 10 and 13 kcal/mol; p-(chloromercuri)benzenesulfonate (pCMBS), an organic mercurial inhibitor of erythrocyte water channels, and cytochalasin B did not alter Pf. These results indicate that reconstitution of glucose carriers at high density increases water permeability but does not result in water channel activity. However, because the turnover number of reconstituted carriers is reduced from that of native carriers, experiments were also performed on erythrocyte ghosts with intact water channel function. In ghosts, Pf averaged 0.038 +/- 0.013 (n = 9), while the activation energy for water flow averaged 3.0 +/- 0.3 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.  相似文献   

16.
Aquaporin CHIP, a 28 kDa channel forming protein, has been proposed to function as water channel in both erythrocyte and kidney proximal tubule. Recently, we have reported that in frog urinary bladder, a model of the kidney collecting tubule, polyclonal antibodies against human erythrocyte CHIP recognize and immunoprecipitate a 30 kDa protein from the epithelial cell homogenate. In the present work confocal fluorescence microscopy was used to determine the cellular and subcellular localization of CHIP28-like proteins in the urinary epithelium. A clear labeling of the apical border was found after Triton X-100 permeabilization. The labeling was distributed throughout the apical domain and not restricted to specific domains of the membrane. The staining was also present in the deeper confocal sections where the fluorescence seems to be localized at the cellular contour. No difference in the labeling patterns was observed between resting and ADH-treated bladder. Specificity of the staining was confirmed by the absence of the labeling pattern when antiserum was preadsorbed on CHIP28 protein immobilized on Immobilon P stripes. Our results suggest that CHIP-like proteins are not proteins inserted in the apical membrane during the antidiuretic response. Moreover, we do not know whether the labeling was due to the presence of CHIP28 itself or an as-yet-unidentified protein sharing immunological analogies with aquaporin CHIP.  相似文献   

17.
Targeting of water channels in renal epithelia may involve trafficking of clathrin-coated vesicles. We have isolated and measured the osmotic water permeability (Pf) of purified clathrin-coated vesicles from bovine kidney cortex and inner medulla, and bovine brain, a tissue not expected to contain "water channels." Brain-coated vesicles had a diameter of 80 nm in negatively stained preparations. Pf was measured by a stopped-flow light scattering technique. In brain-coated vesicles, water transport was functionally homogeneous with a low Pf of 0.0016 +/- 0.0001 cm/s (seven preparations, 23 degrees C). Pf was independent of osmotic gradient size (25-300 mOsm), not inhibited by mercurials, and not altered by removal of the clathrin coat. The activation energy (Ea) for Pf was high (11 +/- 1 kcal/mol less than 34 degrees C, 17 +/- 2 kcal/mol greater than 34 degrees C). Therefore, water channels are absent from brain-coated vesicles. In contrast, there were two functional populations of vesicles in coated vesicle preparations from both kidney cortex and medulla. One population of vesicles had low water permeability and no water channels, whereas a second population had high Pf (0.02 cm/s, 21 degrees C) that was inhibited by HgCl2, and low Ea (2-3 kcal/mol). The fraction of vesicles with high Pf was 52 +/- 3% (S.D., n = 3, cortical vesicles) and 26 +/- 3% (medullary vesicles). These results provide evidence that functional water channels are not present in clathrin-coated vesicles from the brain, whereas they are found in a population of coated vesicles from kidney cortex and medulla, tissues in which water channels are recycled between the plasma membrane, and an intracellular compartment.  相似文献   

18.
Jk (kidd) blood group antigens are carried by the urea transporter UT-B[1,2]. The Jknull phenotype, lack-ing urea permeability in erythrocytes[3,4], has a very low frequency in all populations except Polynesians and Finns[5]. In Japan, only 14 individuals with Jk (a-b-) phenotype were identified from 638460 screened donor’s blood samples using the 2 mol/L urea solution hemolysis test[6]. The frequency of Jknull is 0.27% in Polynesian, about 0.03% in Finland[7], and extremely rare in Fran…  相似文献   

19.
20.
The functional unit size of the water channel in rabbit erythrocytes was assessed using target size analysis following radiation inactivation. Using Radiochromic nylon dosimetry, accurate values of accumulated dose yielded an absolute target analysis, leading to direct determination of molecular size. The erythrocyte water channel functional size was shown to be 30 kDa, and is identical to the size found in rat renal proximal tubule brush border membranes (1), suggesting close homology of these two water channels. The result suggests that the 28 kDa channel-like intrinsic protein (CHIP28) recently isolated from human erythrocytes and proximal tubule (2), which is believed to form water channels of oligomeric construction may have a functional water channel activity in monomeric form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号