首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to its capability for producing various microcystins, Microcystis aeruginosa is recognized as one of the most toxic, bloom-forming cyanobacteria. In this study, the fates of intra- and extracellular microcystin-LR (MC-LR) were investigated when the mixotrophic golden alga Poterioochromonas sp. (ZX1) was grazing on M. aeruginosa cells. In the control groups, the total MC-LR concentration increased with the growth of M. aeruginosa with an MC-LR content per cell of 0.5–1.5 × 10−8 μg cell−1. In the treatment with ZX1, the total MC-LR decreased linearly throughout the incubation period. In particular, intracellular MC-LR disappeared with a loss of M. aeruginosa cells in the first few days. Part of the intracellular MC-LR was released to the medium under the grazing stress, resulting in an increase of extracellular MC-LR. The degradation rate of MC-LR was positively related to the initial abundance of ZX1 and negatively related to that of M. aeruginosa. The inhibition ratio of MC-LR production dropped sharply from 98 to 67% when the initial abundance of M. aeruginosa increased from 106 to 107 cells ml−1. However, it increased from 84 to 99% when the initial ZX1 abundance increased from 104 to 105 cells ml−1. The effective removal of both M. aeruginosa cells and MC-LR was observed under lower M. aeruginosa abundance (<106 cells ml−1) and higher ZX1 abundance (>1% of M. aeruginosa abundance). Light had little impact on MC-LR degradation, but MC-LR degradation decreased due to the loss of ZX1 after 10 days of darkness. This study showed that the interactions between M. aeruginosa and ZX1 were strongly influenced by their initial abundances.  相似文献   

2.
过氧化氢可抑制藻类生长, 同时会导致微囊藻毒素(Microcystins, MCs)的释放, 实验设置4个处理组探讨了外源微囊藻毒素MC-LR对H2O2胁迫下铜绿微囊藻生理生化变化的影响。结果表明: 在H2O2胁迫下, 微囊藻的生长和光合活性受到显著抑制, 藻细胞存活率降低, ROS含量明显增加, SOD活性上升。与单独H2O2胁迫相比, 加入MC-LR能增加微囊藻细胞的存活率。250 mol/L H2O2处理24h和48h后, 在培养基中加入200 ng/mL MC-LR可以缓解H2O2对铜绿微囊藻光合系统PSII活性的抑制作用。当微囊藻暴露于250 mol/L H2O2环境中时, 添加了MC-LR处理组藻细胞中的ROS含量明显减少(P0.05)。在相同浓度H2O2且加入了外源MC-LR后藻细胞SOD活性下降(P0.05)。因此, 微囊藻毒素MC-LR可缓解250 mol/L H2O2引起的氧化损伤并增强微囊藻自身的生存能力。研究结果有利于阐明H2O2胁迫影响产毒蓝藻生长代谢的途径及MCs生物学意义。    相似文献   

3.
Viruses can control the structure of bacterial communities in aquatic environments. The aim of this project was to determine if cyanophages (viruses specific to cyanobacteria) could exert a controlling influence on the abundance of the potentially toxic cyanobacterium Microcystis aeruginosa (host). M. aeruginosa was isolated, cultured, and characterized from a subtropical monomictic lake-Lake Baroon, Sunshine Coast, Queensland, Australia. The viral communities in the lake were separated from cyanobacterial grazers by filtration and chloroform washing. The natural lake viral cocktail was incubated with the M. aeruginosa host growing under optimal light and nutrient conditions. The specific growth rate of the host was 0.023 h(-1); generation time, 30.2 h. Within 6 days, the host abundance decreased by 95%. The density of the cyanophage was positively correlated with the rate of M. aeruginosa cell lysis (r(2) = 0.95). The cyanophage replication time was 11.2 h, with an average burst size of 28 viral particles per host cell. However, in 3 weeks, the cultured host community recovered, possibly because the host developed resistance (immunity) to the cyanophage. The multiplicity of infection was determined to be 2,890 virus-like particles/cultured host cell, using an undiluted lake viral population. Transmission electron microscopy showed that two types of virus were likely controlling the host cyanobacterial abundance. Both viruses displayed T7-like morphology and belonged to the Podoviridiae group (short tails) of viruses that we called cyanophage Ma-LBP. In Lake Baroon, the number of the cyanophage Ma-LBP was 5.6 x 10(4) cyanophage x ml(-1), representing 0.23% of the natural viral population of 2.46 x 10(7) x ml(-1). Our results showed that this cyanophage could be a major natural control mechanism of M. aeruginosa abundance in aquatic ecosystems like Lake Baroon. Future studies of potentially toxic cyanobacterial blooms need to consider factors that influence cyanophage attachment, infectivity, and lysis of their host alongside the physical and chemical parameters that drive cyanobacterial growth and production.  相似文献   

4.
The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C(18) cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C(18) reverse-phase column. The specific growth rate (mu) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing mu. The MC-LR and MC-RR contents on a dry weight basis were highest at mu of 0.1/day at 339 and 774 microg g(-1), respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower mu, whereas the MC-producing rate was linearly proportional to mu. The C fixation rate at an ambient irradiance (160 microeinsteins m(-2) s(-1)) increased with mu. The ratios of the MC-producing rate to the C fixation rate were higher at a lower mu. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.  相似文献   

5.
1. We studied the effects of toxic cyanobacteria, Microcystis aeruginosa , on Daphnia pulex populations. The experiment was performed at room temperature in laboratory microcosms to which we added toxic Microcystis in two pulses. Green alga, Scenedesmus obtusiusculus, was provided in two concentrations.
2. Microcystis exposure resulted in a decreased population density of Daphnia. The proportion of adolescents was higher in the Microcystis treatment than in the control, while the proportion of newborns did not differ significantly from the control. This indicates delayed maturation of Daphnia exposed to Microcystis . We found no significant impacts of cyanobacteria, food level or clonal origin on population variability after correcting for differences in population size.
3. Juveniles of the two clones studied showed different sensitivities to toxic Microcystis in the acute test. However, in the population experiment we did not find clonal differences between Microcystis and control treatments in the relative proportion of juveniles.
4. The number of ephippia produced per adult was highest in the treatments with Microcystis. This indicates that cyanobacterial toxins may be one of several factors inducing ephippia formation, acting directly or through inhibition of feeding.  相似文献   

6.
Laguna de Bay, the largest freshwater lake in the Philippines, experiences periodic blooms of the cyanobacteria Microcystis aeruginosa. Blooms of these cyanobacteria in 1996, 1998 and 1999 were sampled. HPLC and MALDI-TOF mass spectrometry were used to analyze for microcystins. A total of 16 structural variants of the toxin were isolated from the samples with microcystin LR (MC-LR) as the most abundant variant in the samples from 1996 and 1999 making up 77 to 85% of the total, respectively. MC-RR was the dominant variant in the 1998 bloom making up 38%. The samples from 1996 had the highest total toxin concentration (4049 microg g(-1)) followed by those from 1998 (1577 microg g(-1)) and 1999 (649 microg g(-1)). A strain of M. aeruginosa previously isolated from the lake was also cultured in the laboratory under different nitrogen concentrations (1, 3 and 6 mg L(-1)) and elevated phosphorus concentration (0.5 mg L(-1)) to determine the influence of these factors on toxin production. A total of 9 different structural variants of microcystin were isolated from the laboratory cultures with MC-LR consisting more than 75% of the total in all treatments. No significant differences in the total toxin concentration as well as the % distribution of the different variants among treatments were observed. However, the strain of M. aeruginosa cultured in the laboratory had from 3 to 20 times higher total microcystin than those harvested from the lake.  相似文献   

7.
Microcystin-leucine arginine (MC-LR) is a potent specific hepatotoxin produced by cyanobacteria in diverse water systems, and it has been documented to induce liver injury and hepatocarcinogenesis. However, its toxic effects on intrahepatic biliary epithelial cells have not been invested in detail. In this study, we aimed to investigate the effects of MC-LR exposure on the intrahepatic biliary epithelial cells in the liver. MC-LR was orally administered to mice at 1 μg/L, 7.5 μg/L, 15 μg/L, or 30 μg/L for 180 consecutive days for histopathological and immunoblot analysis. We observed that MC-LR can enter intrahepatic bile duct tissue and induce hyperplasia of mice. Human primary intrahepatic biliary epithelial cells (HiBECs) were cultured with various concentrations of MC-LR for 24 h, meanwhile the cell viability and proteins level were detected. Western blotting analysis revealed that MC-LR increased RSK phosphorylation via ERK signaling. RSK participated in cell proliferation and cell cycle progression. Taken together, after chronic exposure, MC-LR-treated mice exhibited abnormal bile duct hyperplasia and thickened bile duct morphology through activating the ERK-RSK signaling. These data support the potential toxic effects of MC-LR on bile duct tissue of the liver.  相似文献   

8.
The patterns of occurrence of the peptide hepatotoxin microcystin-LR (MC-LR) was studied in three hypereu-trophic hardwater lakes (Coal, Driedmeat, and Little Beaver) in central Alberta, Canada, over three open-water seasons. MC-LR concentration was based on high-performance liquid chromatography detection and expressed as μg.g?1 of total plankton biomass, ng.L?1 of lake water, and μg.g?1 of Microcystis aeruginosa Kuetz. emend. Elenkin. MC-LR was highly variable temporally (differences up to 3 orders of magnitude) within each lake over an individual year, between years in an individual lake, and between lakes in any year. Seasonal (within-year) changes in MC-LR concentration (expressed in the preceding units) were positively correlated to the abundance and biomass Of the cyanobacterium M. aeruginosa (r =0.60–0.77), total and total dissolved phosphorus concentration (r =0.46–0.59), pH (r=0.38–0.58), and chlorophyll a (r=0.25–0.59). Surprisingly, there was no relationship between MC-LR concentration and water temperature (range: 7°-24°C, r =-0.13 to 0.02) and a negative correlation with nitrate concentration (r =–0.27 to -0.34). In two synoptic surveys examining spatial variability, MC-LR concentrations were quite variable (CV of 185 and 36% between sampling sites for Coal and Little Beaver lakes, respectively). Spatial distribution of MC-LR on any one day was correlated with the abundance and biomass of M. aeruginosa. Over a 24-h period, MC-LR concentration in M. aeruginosa decreased more than 6-fold at night relative to daytime concentrations. In general, analytical and within-site variation of MC-LR was relatively small (CV < 4 and 9%, respectively) but greatest both within and between years in a lake followed by diel and spatial variation.  相似文献   

9.
This paper describes the occurrence of toxic cyanobacteria along the Guadiana River over its course between Mérida and Badajoz (Extremadura, Spain). Water sampling for phytoplankton quantification and toxin analysis was carried out regularly between 1999 and 2001 in six different locations, including two shallow, slow-flowing river sites, two streamed river sites and two drinking water reservoirs. The cyanobacterial community differed significantly between these locations, especially during the summer. The predominant genera were Microcystis, Oscillatoria, Aphanizomenon and Anabaena. Using an ELISA assay the total microcystin contents of natural water samples from the most eutrophic locations ranged from 0.10 - 21.86 microg mcyst-LR equivalent x L(-1) in Valdelacalzada and 0.10-11.3 microg mcyst-LR equivalent x L(-1) in Vitonogales, and a seasonal variation of toxin content was observed. The amount of microcystins produced by each strain was determined by ELISA assay and the detection and identification of microcystin variants of three toxic strains of Microcystis aeruginosa was performed by high performance liquid chromatography (HPLC). The analysis of microcystins of the cultured strains revealed that toxin production was variable among different strains of M. aeruginosa isolated either from different blooms or from the same bloom.  相似文献   

10.
Four bacteria, identified as Pseudomonas aeruginosa, Alcaligenes eutrophus, Bacillus subtilis and Micrococcus luteus were isolated from crude oil polluted soils using anthracene as the sole carbon and energy source. All the organisms utilized n-hexadecane, n-tetradecane, diesel oil, engine oil and naphthalene as sole carbon sources. None could utilize hexane, cycloheptane, xylene, benzene, toluene, phenol, fluoranthene,and kerosene as carbon sources. Highest cell density obtained with 0.1% (w/v) anthracene were 4.5 x 10(7) (cfu/ml), 8.6 x 10(6) (cfu/ml), 5.4 x 10(6) and 2.4 x 10(6) (cfu/ml) respectively, for P. aeruginosa, A. eutrophus, B. subtilis and M. luteus after 30 days incubation. Growth of the organisms on a Nigerian crude oil resulted in a residual oil concentration of 22.2%, 33.3%, 39.3%, 44% and 91.7% respectively, for P. aeruginosa, A. eutrophus, B. subtilis, M. luteus and the noninoculated control on the 14 th day. Ring fission enzymes of the meta pathway were detected in induced cells of P. aeruginosa and A. eutrophus while ortho pathway enzymes were detected in B. subtilis and M. luteus. P. aeruginosa and A. eutrophus had specific catechol-2,3-dioxygenase activities of 3.8 +/- 0.183 and 0.64 +/- 0.032 micromol/min x mg protein respectively while catechol-1,2-dioxygenase activities of 1.95 +/- 0.029 and 1.89 +/- 0.026 micromol/min x mg protein were detected in B. subtilis and M. luteus respectively. This work, highlights the capability of these unreported tropical strains of A. eutrophus, B. subtilis and M. luteus as anthracene degraders.  相似文献   

11.
Iron is an essential element to marine biota. Different types of dissolved organic matter (DOM), such as humic substances have impacts on the marine coastal waters iron chemistry. The aim of the study was to examine how the presence of humic substances (both aquatic and sedimentary) may affect iron bioavailability to the bloom-forming cyanobacterium Microcystis aeruginosa Kutzing incubated on standard and modified mineral BG-11 media. The final iron concentrations in the growth media ranged from 0.1 to 100microM. The results demonstrate that both the growth rate and the concentration of chlorophyll a in cultures of M. aeruginosa are limited by insufficient (<10microM) Fe concentrations. The addition of aquatic humic substances in the presence of iron in concentrations <0.1microM increased the optical density 25-fold, and the production of chlorophyll a 15-fold as compared with the cultures exposed to iron only at the same concentration. Sedimentary humic acids in the presence of iron at a concentration of 10microM reduced the growth and production of chlorophyll a by 50% as compared to the cultures exposed to iron only at the same concentration. Possible mechanisms of humic substances - metal ion - alga interactions are discussed. It is suggested that aquatic humic substances could be of great importance in the formation of cyanobacteria blooms.  相似文献   

12.
Several blooms of Microcystis aeruginosa have been observed in the Patos Lagoon estuary during the last fifteen years without a proper investigation of their ecological importance or possible toxicity. The present study has identified and quantified the presence of cyanobacteria in the Patos Lagoon estuary, particularly of M. aeruginosa. During this survey, identification and quantification of the main phytoplankton groups were done in relation to geographical distribution in the estuary. The presence of M. aeruginosa colonies in the estuarine region confirmed their superficial distribution throughout the estuarine waters during twelve months with a maximum of 1, 3.10(6) cells. L-1 in December, 1994 and a minimum of 1, 5.10(5) cells. L-1 in August, 1995 and also confirmed that M. aeruginosa originated from waters in the north of the estuary. The period of the highest cell and colonies densities was coincident with high chlorophyll-a levels in surface waters. Toxicity of M. aeruginosa bloom material was determined by bioassay and concentrations of hepatotoxins microcystins were identified by HPLC-DAD. M. aeruginosa blooms were considered highly toxic, presenting a 24 h-LD50 lower than 100 mg.Kg-1 b.w. and a toxin content higher than 1 microgram.mg-1 d.w. Several microcystin variants were found in the extracts with microcystin-LR predominating.  相似文献   

13.
SUMMARY 1. The feeding behaviour of the zebra mussel ( Dreissena polymorpha ) was studied in the laboratory on different combinations of food, including a green alga ( Chlamydomonas reinhardtii ) and toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa .
2. The highest clearance rate of phytoplankton by zebra mussels was found when the mussels were feeding on a mixture of Chlamydomonas and non-toxic Microcystis , the lowest on a mixture of Chlamydomonas and toxic Microcystis .
3. The differences found in the clearance rates between food combinations can be partly explained by the production of pseudofaeces containing live phytoplankton cells. Zebra mussels expelled significantly more live phytoplankton cells in the presence of toxic Microcystis than in the presence of non-toxic Microcystis . The pseudofaeces contained predominantly live Chlamydomonas cells. Proportionately much less live Microcystis cells were encountered in the pseudofaeces.
4. Consequently, grazing of zebra mussels on a combination of Chlamydomonas and Microcystis may finally result in a dominance of Chlamydomonas over Microcystis . The presence of toxic Microcystis may even strengthen this shift.  相似文献   

14.
Microcystins (MCs) are a group of cyclic hepatotoxic peptides produced by cyanobacteria. Microcystin-LR (MC-LR) contains Leucine (L) and Arginine (R) in the variable positions, and is one of the most common and potently toxic peptides. MC-LR can inhibit protein phosphatase type 1 and type 2A (PP1 and PP2A) activities and induce excessive production of reactive oxygen species (ROS). The underlying mechanism of the inhibition of PP1 and PP2A has been extensively studied. The over-production of ROS is considered to be another main mechanism behind MC-LR toxicity; however, the detailed toxicological mechanism involved in over-production of ROS in carp (Cyprinus carpio L.) remains largely unclear. In our present study, the hydroxyl radical (•OH) was significantly induced in the liver of carp after a relatively short-term exposure to MC-LR. The elevated reactive oxygen species (ROS) production may play an important role in the disruption of microtubule structure. Pre-injection of the antioxidant N-acetyl-cysteine (NAC) provided significant protection to the cytoskeleton, however buthionine sulfoximine (BSO) exacerbated cytoskeletal destruction. In addition, the elevated ROS formation induced the expression of apoptosis-related genes, including p38, JNKa, and bcl-2. A significant increase in apoptotic cells was observed at 12 - 48 hours. Our study further supports evidence that ROS are involved in MC-LR induced damage to liver cells in carp, and indicates the need for further study of the molecular mechanisms behind MC-LR toxicity.  相似文献   

15.
In order to maintain rotifer populations during periods of low algal production, it is necessary to offer alternate diets, some of which include forms of preserved algae. The present work is based on the effect of live and dead Chlorella vulgaris on the population growth of Brachionus calyciflorus and Brachionus patulus. The experimental design consisted of three algal levels (0.5 x 10(6), 1.5 x 10(6) and 4.5 x 10(6) cells ml-1) offered in three forms (living, frozen and heat-killed). The maximal population density values for B. calyciflorus ranged from 55 +/- 1 ind. ml-1 (at 0.5 x 10(6) cells ml-1) to 471 +/- 72 ind. ml-1 (at 4.5 x 10(6) cells ml-1) with live Chlorella, but was much lower (6 +/- 1 to 26 +/- 6 ind. ml-1) with frozen or heat-killed alga under comparable food levels. However, the maximum population density of B. patulus under live or or heat-killed Chlorella was similar at comparable algal levels but when offered frozen algae it was four times less. The highest mean peak population density was 1,277 +/- 83 ind. ml-1 under 4.5 x 10(6) cells ml-1. The rate of population increase for B. calyciflorus varied from 0.50 to 0.79 using live Chlorella, but under comparable conditions, this range was lower (0.21 to 0.31) for B. patulus. Results have been discussed in light of possible application for aquaculture.  相似文献   

16.
Microcystis aeruginosa strain MRC is unique in its' possession of the mcyA-J gene cluster, which encodes microcystin synthetase, but its' inability to produce microcystins. M. aeruginosa strain MRD is genetically identical to MRC at numerous genomic loci examined, but produces a variety of microcystins, mainly with the amino acid tyrosine in the molecule. Zooplankton studies with Daphnia galeata and D. pulicaria , using the mutant (MRC) and its' wild type (MRD), showed for the first time that microcystins other than microcystin-LR can be responsible for the poisoning of Daphnia by Microcystis . Regardless of microcystin content, both Daphnia exhibited significantly reduced ingestion rates when fed with either strain of M. aeruginosa compared with the green alga Scenedesmus acutus . A disruption of the molting process in both Daphnia spp. was noted when these species were fed with MRC cells. Such symptoms on Daphnia have not been previously reported for cyanobacteria and may point to a bioactive compound, other than microcystin, which inhibits the hardening of protein–chitin complexes in Daphnia .  相似文献   

17.
18.
The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 +/- 1.8 nmol P(i) min(-1) mg protein(-1), with a requirement for Mg(2+). Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed.  相似文献   

19.
Changes in the quantitative characteristics and functioning of phytoplankton in Lake Bol’shie Shvakshty have been assessed. The changes are evoked by the introduction of herbivorous fishes into the lake and the resulting disturbance of ecological balance in the ecosystem and the shift of the lake into a hypertrophic state from a weakly eutrophic state. Human interference has caused the cyanobacteria density (abundance) and biomass values in the overall phytoplankton composition to strongly exceed (3.5 × 109 cells/L and above 68 μg/L chlorophyll-а, respectively) the threshold value for safe recreational use of water bodies (20 million cells/L and 10 μg/L chlorophyll-а) established by the World Health Organization (WHO). The lake can be assigned to the third level of hazard to human health within the classification proposed by the WHO, as the cyanobacteria density is higher than 100 million cells/L and chlorophyll-а content is higher than 50 μg/L. MC-producing Microcystis species were identified among the cyanobacteria that has propagated in the lake in recent years, and five microcystin variants, including the highly toxic MC-LR, have been detected in the water.  相似文献   

20.
We examined the competition between the cyanobacterium Microcystisnovacekii (Kom.) Comp. and the green alga Scenedesmus quadricauda(Turpin) Brébisson using unialgal and mixed chemostatcultures with various supply rates of culture medium where limited algal growth. In unialgal cultures, bothspecies grew at all of the dilution rates examined (0.1, 0.3and 0.8 day-1): steady-state cell densities were 1 x 104 to8 x 104 cells mL-1 for M. novacekii and 0.5 x 105 to 2.1 x 105cells mL-1 for S. quadricauda. Microcystis novacekii was dominantin mixed cultures at a dilution rate of 0.1 day-1, where thesteady-state cell density was 1 x 104 to 7 x 104 cells mL-1for M. novacekii and 1 x 102 to 5 x 102 cells mL-1 for S. quadricauda.Scenedesmus quadricauda was dominant in mixed cultures at thehigher dilution rates (0.3 and 0.8 day-1), where the final celldensity was 0.5 x 102 to 6.4 x 102 cells mL-1 for M. novacekiiand 0.2 x 105 to 7 x 105 cells mL-1 for S. quadricauda. Thisresult indicates that the dilution rate affects the competitiveinteraction. We conclude that it is necessary to consider waterexchange in the study of mechanisms of cyanobacterial blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号