首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant growth regulator PGR-IV has been reported to improve the growth, boll retention, and yield of cotton (Gossypium hirsutum L.) under optimum growing conditions. However, little is known about the response of cotton to PGR-IV under low light stress. A 3-year field study was conducted to determine if applying PGR-IV before an 8-day period of shade (63% light reduction) benefitted the growth and yield of shaded cotton. Shading during early squaring did not affect yield. Shading after the first flower stage significantly increased leaf chlorophyll concentration and fruit abscission and decreased the leaf photosynthetic rate, nonstructural carbohydrate concentrations, and lint yield. Foliar application of PGR-IV at 292 mL ha−1 at early squaring and first flower did not improve the leaf photosynthetic rate of shaded cotton. However, shaded plants receiving PGR-IV had higher nonstructural carbohydrate concentrations in the floral buds and significantly lower fruit abscission than the shaded plants without PGR-IV. Applying PGR-IV to the foliage before shading resulted in a numeric increase (6–18%) in lint yield compared with shaded plants without PGR-IV. The decreased fruit abscission from the application of PGR-IV was associated with improved assimilate translocation. The yield enhancement from foliar application of PGR-IV was attributed to increased fruit retention. However, the average boll weight of shaded plants with PGR-IV tended to be lower than that of shaded plants without PGR-IV. Lint percentage was not affected by PGR-IV. Foliar application of PGR-IV appears beneficial for increasing the fruit retention of shaded cotton. Received June 12, 1997; accepted January 19, 1998  相似文献   

2.
The insecticide imidacloprid (tradename Trimax™) has been shown to increase cotton (Gossypium hirsutum L.) yield in the absence of insects, but the explanation for this is not clear. Growth room studies were designed to investigate changes in the physiology and biochemistry of imidacloprid-treated cotton plants and provide information on the mode of action of yield enhancement. Imidacloprid was applied at the pinhead square growth stage at the rate of 52.3 g ai/ha and plants were exposed to day temperatures of 30, 33, 36, and 39°C. Increased levels of photosynthesis and higher values of chlorophyll fluorescence yield, measured two days after imidacloprid application, showed an advantage of imidacloprid-treated over untreated plants. The effect of imidacloprid was greater at the higher temperatures of the growth chamber studies. The results suggested that the imidacloprid-treated plants suffered less temperature stress. This suggestion was supported by findings of reduced glutathione reductase in the imidacloprid-treated plants in the growth chamber, indicating that the untreated plants were experiencing more stress, necessitating the activation of this defense mechanism.  相似文献   

3.
Plagues of rodents in field crops have been a problem of human societies for centuries. These problems diminished with the onset of effective herbicides and clean farming practices in the 1960s, but there has been a resurgence of rodent irruptions in cropfields since the advent of conservation tillage systems. We examined the efficacy of in-furrow applications of 2% zinc phosphide (Zn3P2) pellets (27.5 kg ha−1 [5 lb acre−1]) at planting for the control of rodent damage in no-till corn. Three independent field studies were conducted in northeastern NE, southern IL, and southern IN. Vole populations in the most severely damaged fields (IL) ranged from 104 to 138 active colonies ha−1. Zn3P2 reduced yield loss in the three study areas by 7–34%. Projected economic returns ranged from US$1044 to US$5360, based on representative 64-ha fields and a net profit of US$250 ha−1. Benefit:cost ratios ranged from 1.1 to 5.6:1 and were directly related to vole population levels. To prevent rodent damage in no-till cornfields, we recommend an integrated pest management approach that incorporates the use of a combination of the following techniques: rodent population monitoring, economic thresholds, mowing, early pre-plant herbicides, broadcast whole-kernel corn, and in-furrow applications of Zn3P2 pellets.  相似文献   

4.
Alpine plant species have been shown to exhibit a more pronounced increase in leaf photosynthesis under elevated CO2 than lowland plants. In order to test whether this higher carbon fixation efficiency will translate into increased biomass production under CO2 enrichment we exposed plots of narrow alpine grassland (Swiss Central Alps, 2470 m) to ambient (355 l l-1) and elevated (680 l l-1) CO2 concentration using open top chambers. Part of the plost received moderate mineral nutrient additions (40 kg ha-1 year-1 of nitrogen in a complete fertilizer mix). Under natural nutrient supply CO2 enrichment had no effect on biomass production per unit land area during any of the three seasons studied so far. Correspondingly, the dominant species Carex curvula and Leontodon helveticus as well as Trifolium alpinum did not show a growth response either at the population level or at the shoot level. However, the subdominant generalistic species Poa alpina strongly increased shoot growth (+47%). Annual root production (in ingrowth cores) was significantly enhanced in C. curvula in the 2nd and 3rd year of investigation (+43%) but was not altered in the bulk samples for all species. Fertilizer addition generally stimulated above-ground (+48%) and below-ground (+26%) biomass production right from the beginning. Annual variations in weather conditions during summer also strongly influenced above-ground biomass production (19–27% more biomass in warm seasons compared to cool seasons). However, neither nutrient availability nor climate had a significant effect on the CO2 response of the plants. Our results do not support the hypothesis that alpine plants, due to their higher carbon uptake efficiency, will increase biomass production under future atmospheric CO2 enrichment, at least not in such late successional communities. However, as indicated by the response of P. alpina, species-specific responses occur which may lead to altered community structure and perhaps ecosystem functioning in the long-term. Our findings further suggest that possible climatic changes are likely to have a greater impact on plant growth in alpine environments than the direct stimulation of photosynthesis by CO2. Counter-intuitively, our results suggest that even under moderate climate warming or enhanced atmospheric nitrogen deposition positive biomass responses to CO2 enrichment of the currently dominating species are unlikely.  相似文献   

5.
The effect of long-term (1983–1988) applications of crop residues (millet straw, 2–4 t ha-1 yr–1) and/or mineral fertilizer (30 kg N, 13 kg P and 25 kg K ha-1 yr-1) on uptake of phosphorus (P) and other nutrients, root growth and mycorrhizal colonization of pearl millet (Pennisetum glaucum L.) was examined for two seasons (1987 and 1988) on an acid sandy soil in Niger. Treatments of the long-term field experiment were: control (–CR–F), mineral fertilizer only (–CR+F), crop residues only (+CR–F), and crop residues plus mineral fertilizer (+CR+F).In both years, total P uptake was similar for +CR–F and –CR+F treatments (1.6–3.5 kg P ha-1), although available soil P concentration (Bray I P) was considerably lower in +CR–F (3.2 mg P kg-1 soil) than in –CR+F (7.4) soil. In the treatments with mineral fertilizers (–CR+F; +CR+F), crop residues increased available soil P concentrations (Bray I P) from 7.4 to 8.9 mg kg-1 soil, while total P uptake increased from 3.6 to 10.6 kg P ha-1. In 1987 (with 450 mm of rainfall), leaf P concentrations of 30-day-old millet plants were in the deficiency range, but highest in the +CR+F treatment. In 1988 (699 mm), leaf P concentrations were distinctly higher, and again highest in the +CR+F treatment. In the treatments without crop residues (–CR–F; –CR+F), potassium (K) concentrations in the leaves indicated K deficiency, while application of crop residues (+CR–F; +CR+F) substantially raised leaf K concentrations and total K uptake. Leaf concentrations of calcium (Ca) and magnesium (Mg) were hardly affected by the different treatments.In the topsoil (0–30 cm), root length density of millet plants was greater for +CR+F (6.5 cm cm-3) than for +CR–F (4.5 cm cm-3) and –CR+F (4.2 cm cm-3) treatments. Below 30 cm soil depth, root length density of all treatments declined rapidly from about 0.6 cm cm-3 (30–60 cm soil depth) to 0.2 cm cm-3 (120–180 cm soil depth). During the period of high uptake rates of P (42–80 DAP), root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi was low in 1987 (15–20%), but distinctly higher in 1988 (55–60%). Higher P uptake of +CR+F plants was related to a greater total root length in 0–30 cm and also to a higher P uptake rate per unit root length (P influx). Beneficial effects of crop residues on P uptake were primarily attributed to higher P mobility in the soil due to decreased concentrations of exchangeable Al, and enhancement of root growth. In contrast, the beneficial effect of crop residues on K uptake was caused by direct K supply with the millet straw.  相似文献   

6.
In order to obtain high productivity for a cotton crop, one of the major requirements is to establish an adequate plant population. The use of good-quality seed may ultimately be the best approach to attain this goal problem. The objective of this research was to study the effect of N-fertilization (at rates of 95.2 and 142.8 kg of N ha−1), foliar application of K (at rates of 0, 0.38, 0.77, 1.15 kg of K2O ha−1, applied twice during square initiation and boll development stages) and the plant growth retardant (PGR), mepiquat chloride (applied twice, 75 days after planting at 0.0 [control] and 0.048 kg a.i. ha−1, and 90 days after planting at 0.0 [control] and 0.024 kg a.i. ha−1), on seed yield, viability, and seedling vigor of Egyptian cotton (Gossypium barbadense cv. Giza 86). A field experiment was conducted at the Agricultural Research Center, Giza, Egypt in two growing seasons. Growth, mineral uptake, seed yield per plant and per ha, seed weight, seed viability, seedling vigor and cool germination test performance were all found to increase significantly due to the addition of the high N-rate, the foliar application of three potassium concentrations, and the PGR mepiquat chloride. The N and K rates as well as application of mepiquat chloride had no significant effect on the germination rate index in both seasons. Under the conditions of this study, applying N at a rate of 142.8 kg ha−1 combined with spraying cotton plants with K2O at 1.15 kg ha−1 and with mepiquat chloride at 0.048 + 0.024 kg ha−1 were found to improve seed yield as well as seed viability and seedling vigor in the next season.  相似文献   

7.
Field studies were conducted during 1999-2001 in two climatic/edaphic areas of Georgia (Southern Piedmont and East Gulf Coastal Plain) to test the hypothesis that precision placement of aldicarb with cotton seed in hill planting at spatially specific intervals could decrease insecticide use for management of tobacco thrips, Frankliniella fusca (Hinds). Precision-placed aldicarb controlled thrips during cotton seedling stages using per ha amounts of one-half or less than standard in-furrow application rates with no significant differences in yield. Residual analysis of cotton plants showed that plants in precision placement plots had as much or more aldicarb and aldicarb metabolites present as compared with cotton treated with conventional in-furrow treatments. Higher rates of precision-placed aldicarb did cause phytotoxic burning early in the growing season, but no significant impact on yield was observed.  相似文献   

8.

In wetland ecosystem, nitrogen along with other elements and its management is most imperative for the production of so many aquatic food, non-food and beneficial medicinal plants and for the improvement of soil and water characteristics. With great significant importance of INM (integrated nutrient management) as sources, emphasizing on management on nitrogen as a key element and its divergence, a case study was undertaken on such aquatic food crops (starch and protein-rich, most popular and remunerative) in the farmers’ field of low-lying ‘Tal’ situation of New Alluvial Zone of Indian subtropics. The study was designed in factorial randomized block design, where, three important aquatic food crops (water chestnut (Trapa bispinosa Roxb.), makhana (Euryale ferox Salisb.) and water lily (Nymphaea spp.) as major factor and eleven combinations of organic and inorganic sources of nutrients as sub-factor was considered in the experiment. It revealed from the results that the production of fresh kernels or nuts of water chestnut (8.57 t ha−1), matured nut yield of makhana (3.06t ha−1) and flower stalks of water-lily as vegetables (6.38 t ha−1) including its nutritional quality (starch, protein, sugar and minerals) was remarkably influenced with the application of both organic (neem oilcake @ 0.2 t ha−1) and inorganic sources (NPK @ 30:20:20 kg ha−1 along with spraying of NPK @ 0.5% each over crop canopy at 20 days interval after transplanting) than the other INM combinations applied to the crops. Among the crops, highest WCYE (water chestnut yield equivalence) exhibited in makhana due to its high price of popped-form in the country, which is being exported to other countries at now. Sole application of both (organic and inorganic sources) with lower range did not produce any significant outcome from the study and exhibited lower value for all the crops. Besides production of food crops, INM also greatly influenced the soil and water characterization and it was favourably reflected in this study. The physico-chemical characteristics of soil (textural class, pH, organic carbon, organic matter, ammoniacal nitrogen, nitrate nitrogen, available nitrogen, phosphorus and potassium) are most important and contributed a significant improvement due to cultivation of these aquatic crops. Analysis of such wet bodies represented the water characteristics (pH, BOD, COD, CO =3 , HCO 3 , NO 3 N, SO 4 S and Cl) were most responsive, adaptable and quite favourable for the cultivation of these crops in this vast waste unused wetlands for the mankind without any environmental degradation.

  相似文献   

9.

Background and aims

The combined effects of (1) reduced soil moisture availability, (2) reduced application of inorganic fertilisers while incorporating straw, (3) soil type, and their effects on growth, root system plasticity, phosphorus (P) nutrition of rice, and soil P dynamics are poorly known, but very important when aiming to increase the efficiency of water and P use.

Methods

Using large pots a three-factor factorial experiment was conducted with two moisture treatments (i.e. continuous flooding, and draining of top soil after flowering while subsoil was kept moist through capillary action), three fertilisation treatments; with (P1) and without (P0) applications of inorganic P fertilisers, and 25 % of inorganic fertilisers reduced while incorporating straw (5 t ha?1), and soil type (i.e. clay and sandy soils with 15 and 9 mg P kg?1 soil, respectively in P0). Shoot and root growth, root system plasticity, P nutrient status and soil P dynamics were measured.

Key results

Straw incorporation with reduced inorganic fertiliser application ensured a higher shoot dry weight and yield only in flooded clay soil as compared with P0 and P1, and a similar shoot dry weight and yield to P1 under drained clay soil. A positive growth response was facilitated by an increased water-use efficiency and rate of photosynthesis in shoots, and increased root system plasticity through the production of greater root length, more roots in deep soil layers, and an increased fraction of fine roots. Straw enhanced P extractability in soil. Drained soil reduced P uptake (15–45 %) and increased P-use efficiency. In addition to the re-translocation of P from senescing leaves and stems under both moisture conditions, the P concentration in green leaves under drained condition was also reduced (41–72 %).

Conclusion

Growth benefits of straw incorporation were observed in clay soil under both moisture conditions, and this was facilitated by the improved P availability, increased P uptake, and greater root system plasticity with the production of deeper and finer roots, compared with that in sandy soil, and inorganic fertiliser applications alone. As P uptake was reduced under drained soil, P re-translocation and % P allocated to panicles increased.  相似文献   

10.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

11.
In order to obtain high productivity for a cotton crop, one of the major requirements is to establish an adequate plant population. The use of good-quality seed may ultimately be the best approach to attain this goal problem. The objective of this research was to study the effect of N-fertilization (at rates of 95.2 and 142.8 kg of N ha?1), foliar application of K (at rates of 0, 0.38, 0.77, 1.15 kg of K2O ha?1, applied twice during square initiation and boll development stages) and the plant growth retardant (PGR), mepiquat chloride (applied twice, 75 days after planting at 0.0 [control] and 0.048 kg a.i. ha?1, and 90 days after planting at 0.0 [control] and 0.024 kg a.i. ha?1), on seed yield, viability, and seedling vigor of Egyptian cotton (Gossypium barbadense cv. Giza 86). A field experiment was conducted at the Agricultural Research Center, Giza, Egypt in two growing seasons. Growth, mineral uptake, seed yield per plant and per ha, seed weight, seed viability, seedling vigor and cool germination test performance were all found to increase significantly due to the addition of the high N-rate, the foliar application of three potassium concentrations, and the PGR mepiquat chloride. The N and K rates as well as application of mepiquat chloride had no significant effect on the germination rate index in both seasons. Under the conditions of this study, applying N at a rate of 142.8 kg ha?1 combined with spraying cotton plants with K2O at 1.15 kg ha?1 and with mepiquat chloride at 0.048 + 0.024 kg ha?1 were found to improve seed yield as well as seed viability and seedling vigor in the next season.  相似文献   

12.
The effects of broadcast granular, placed liquid and foliar fertilisers on the tolerance of potatoes to infection by potato cyst nematodes were investigated. The tolerance of the potato cv. Pentland Dell was not significantly improved by fertiliser application type but placed liquid fertiliser, with or without foliar applications, increased the concentrations of N, P and K measured in whole plant dry matter of PCN infected plants. The tolerance of the potato cv. Sante was not statistically improved by altering the balance of fertiliser nitrogen applications between planting and tuber initiation or by applying foliar nitrogen. Nitrogen applications of 120 kg N ha-1 at planting and a further 120 kg N ha-1 at tuber initiation supplemented with foliar N, however, achieved a larger tuber yield than the same nitrogen programme without foliar N and gave a significantly greater yield than the application of 240 kg N ha-1 at planting plus foliar N. The emergence of both cultivars was delayed in the absence of oxamyl. N, P and K concentrations within whole plant dry matter were significantly higher in plants from oxamyl treated plots and both N and K concentrations were significantly increased by increasing the quantity of N at planting, at 56 DAP. Splitting the fertiliser N between planting and tuber initiation appears to be important in maintaining the availability of this nutrient to PCN infected plants throughout the season.  相似文献   

13.
14.
Shoot growth, root growth and macro-nutrient uptake by a high-yielding (5t/ha grain) winter oilseed rape crop have been measured. Maximum rooting density in the top 20cm of soil was 9.4 cm cm−3 and roots reached a depth of at least 1.8 m. Maximum nutrient uptakes were 364 kg ha−1 for N, 43 kg ha−1 for P, 308 kg ha−1 for K, 287 kg ha−1 for Ca and 16 kg ha−1 for Mg. A 30-day drought coincided with the flowering period and root and shoot growth, as well as nutrient uptake rates, were reduced. Nutrient concentrations in the soil solution necessary to sustain the nutrient fluxes into the root system by diffusive supply have been calculated. Peak values were in the range 10 μM for P to 87 μM for N, lower than the observed concentrations, and it was concluded that nutrient transport to roots was not a limitation to uptake by this rape crop.  相似文献   

15.
Summary Inoculation of water fernAzolla pinnata R. Brown (Bangkok isolate) at the rate of 500kg fresh weight ha−1 in rice fields at weekly intervals after planting in addition to 30 kg N ha−1 as urea showed a decrease in its growth and N2-fixation with delay in application. Use of Azolla up to 3 weeks after planting (WAP) during wet and 4 WAP during dry season produced significantly more grain yield than 30 kg N ha−1, whereas its application upto one WAP produced more grain yield than 60 kg N ha−1. Grain yield with Azolla applied at the time of planting was similar to that of 60 kg N treatment during the wet season. Higher grain yields in zero and one WAP Azolla treatments resulted due to increase in both number of panicles m−2 and number of grains/panicle while the subsequent Azolla inoculations increased grain yield mainly by producing more number of grains/panicle. Dry matter and total N yields at maturity of rice crop were more with Azolla application upto 3 WAP during wet and 2 WAP during dry season while the reduction in sterility (%) was observed upto one WAP over 30 kg N ha−1 during both seasons. Number of tillers m−2 and dry matter production at maximum tillering and flowering were more than 30 kg N ha−1 with the use of Azolla upto one WAP. Increased grain N yield was observed with the use of Azolla upto 4 WAP during two seasons whereas straw N yield increased upto one WAP during wet and 2 WAP during dry season.  相似文献   

16.
Field research was conducted on four Atlantic Coastal Plain soils in the United States to evaluate response of corn (Zea mays L.) plants to Mn application. The soils under study were classified as either Aeric or Typic Ochraquults. Manganese application increased corn grain yields by an average of 1195 kg ha–1 on the four soils. The average grain yields on the soils were 7955 kg ha–1 for the control and 9150 kg ha–1 for the +Mn treatment. A Mitscherlich plant growth model was used to establish relationships between percent maximum grain yield and Mn concentration in the ear leaf at early silk (r=0.87, =0.01) and in the mature grain (r=0.58, =0.01). Based on 90% of maximum yield as the definition of the critical deficiency level, the critical Mn deficiency levels calculated with parameters from the Mitscherlich model were 10.6 mg kg–1 in the ear leaf and 4.9 mg kg–1 in the grain.  相似文献   

17.
Greenhouse nutrient solution studies demonstrated that diniconazole will decrease peanut (Arachis hypogaea L.) shoot growth when either root or shoot applied. Root growth and development were decreased by root and, to a lesser extent, by shoot uptake of diniconazole. Diniconazole is apparently xylem translocated, but not phloem translocated. Concentrations of 200 ppb ES isomer of diniconazole in nutrient solution (root uptake) increased specific leaf weight and starch deposits in the leaf. Field applications of 193 g ES isomer ha–1 of diniconazole reduced main stem height by 33%, leaf area index by 16%, and total vegetative dry weight by 19%, but had no effect on average leaf size. Decreased germination of seeds from plants treated with 1435 g ha–1 diaminozide was associated with increased seed dormancy. Seed dormancy was counteracted by either ethylene gas or storage for 150 days after harvest. Soil applications of diniconazole were more effective than foliar appliations in reducing vine growth. Diniconazole's ER isomer is a broad spectrum fungicide that reduced damage (when compared to the control) bySclerotium rolfsii andRhizoctonia solani. The reduced damage by these diseases was thought to be the primary reason for the significant pod yield increase (when compared to the control) observed with the diniconazole treatments. In drought-stressed plots, populations of the two-spotted spider mite (Tetranychus urticae) were increased by diniconazole.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee by the University of Georgia or the U.S. Department of Agriculture and does not imply UGA or USDA approval to the exclusion of other products or vendors that also may be suitable.  相似文献   

18.
Winter barley was grown in a long-term fertilizer experiment (14 years) using two P treatments: (i) no P fertilization over the whole time (–P) and (ii) an annual fertilization of 44 kg P ha–1 (+P). The objective of the study was to investigate the influence of the P supply on total root production and root mortality (i.e., root turnover) and to assess the benefit of a more rapid root turnover on P acquisition. Shoot development and grain yield was reduced in the – treatment, whereas the standing root system had nearly the same size as in the +P treatment. Gross root growth was measured using the ingrowth core method. Mesh bags filled with root-free soil were buried into the rooting zone (0–30 cm) and root growth into the bags over periods of 2–3 weeks was determined. Assuming that no root mortality occured inside the bags during this short period, root length in the bags will be a measure of total root production. Total root production between April and June exceeded the size of the standing root system by a factor of 2 to 3 and was significantly higher at P deficiency. Root mortality as the difference between total root production and the size of the standing root system was also increased at P shortage. P uptake was calculated by using a mechanistic transport and uptake model. Calculations based on gross root growth and root mortality resulted in a higher uptake than calculations based on the development of the standing root system, although the length of the active roots were the same in both calculations. This was due to a better exploitation of undepleted soil areas by the growing root system. The root renewal by a continuous root growth and root mortality is discussed as a mechanism of P uptake efficiency.  相似文献   

19.
The severity of a root rot disease of cereals, caused by Rhizoctonia solani Kühn AG8, was inversely correlated to the Zn status of plants in field studies in 1989 and 1990. In 1989, a preliminary survey was conducted in a farmer's field in South Australia where Zn deficiency and disease were both widespread. Zn concentration in Spear wheat plants at the 3-leaf to early tillering stage was negatively correlated with severity of the disease. For the elevent elements analysed, a correlation matrix showed that Zn had the highest, and only significant (R2=0.52**) association with disease. The effect of Zn applications and their residual value on disease severity was further studied in a long-term field experiment in 1989 and 1990 to which Zn had been applied in 1986. There was a decrease in the area of Rhizoctonia bare patch as Zn rate was increased, a result consistent with the field survey results; the recommended rate of 2.5 kg Zn ha–1 reduced the area affected by bare patch from 42% to 21% of the total crop area compared with no Zn application, overcame Zn deficiency and increased grain yield from 1.1 to 2.8 t ha–1. In 1990, fresh Zn application treatments were applied to trial plots designed for this purpose, in order to compare the response with the older Zn treatments applied in 1986. The areas of bare patch in the older Zn treatments were approximately 5% greater than those in the fresh Zn treatments. The results are consistent with the hypothesis that Zn deficient plants are more susceptible to root rot caused by R. solani. Testing this hypothesis is the subject of a companion paper.  相似文献   

20.

Background and aims

Relevant soil properties and nutrient distributions influencing crop root growth might be different under no-till (NT) and mouldboard plough (MP) management. The possible different root systems within different managements might have key impact on crop nutrient uptake and consequently crop production. Our objective was to assess the long-term combined effects of tillage and phosphorus (P) fertilization on corn (Zea mays L.) root distribution and morphology.

Methods

Corn root and soil samples were collected during the silking stage at five depths (0–5, 5–10, 10–20, 20–30 and 30–40 cm) and three horizontal distances perpendicular to the corn row (5, 15 and 25 cm) under MP and NT with three P fertilizations (0, 17.5, and 35 kg P ha?1) for a long-term (22 years) experiment in eastern Canada. Root morphology and soil properties were determined.

Results

NT practice decreased corn root biomass by ?26 % compared to MP, mainly by decreasing the primary and secondary roots. Additionally, corn roots in NT tend to be more expansive on the surface layer with higher root length and surface densities for the depth of 0–5 cm at two sampling distances of 15 and 25 cm. The 35 kg P ha?1 rate increased the root biomass by 26 and 41 % compared to the 0 and 17.5 kg P ha?1 rates.

Conclusions

No-tillage practice and low rates of P fertilization reduce corn roots. This is probably caused by the weed competition in NT and the continued downward P status with low P rates over 22 years.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号