首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following characteristics of the adenosine triphosphatases (ATPase) in the saccus vasculosus were studied in Salmo gairdneri Richardson: 1) distributional pattern, 2) cytochemical properties in relation to different substrates, inhibitors, pH and bivalent metal ions, and 3) ultrastructural localization. Ultracytochemical studies using modifications of the Washstein-Meisel technique showed that within the pH range 7.1-8.0 several Mg++ or Ca++-activated ATPase are localized on the intracellular surface of membranes and in the cytoplasm of ependymal coronet cells and tanycytes ("supporting cells", "Zwischenzellen", glial cells"). The high ATPase activity at the level of the specialized luminal plasma membranes of coronet cell globules and of tanycyte microvilli is discussed in relation to phenomena of active transport and a possible resulting transfer of low-molecular weight substances into and/or from the cerebrospinal fluid (CSF). The localization of ATPase on the specialized membranes of primary vesicles is considered in connection with available structural and enzyme-cytochemical data on a possible function of these cell organelles in storage and release of substances (including Ca++ ions?). The cytoplasmic ATPase activity in coronet cells is ascribed to microtubules and/or possible existing contractile proteins/filaments, presumably concerned with internal transport or motility processes. In tanycytes ATPase activity is believed to be associated with the characteristic microfilamentous system of still unknown function. The ATPase activity in the (9 + 0) ciliary apparatus of globules could not be interpreted in terms of motility. The present study provides further support to the proposed hypothesis of the transport function of the saccus vasculosus, and an extension of the concept in the sense that not only the principal coronet cells, but also the tanycytes of this circumventricular organ are involved in CSF-homeostasis.  相似文献   

2.
Summary Periodical changes in Ca2+-ATPase and Mg2+-ATPase activity were observed cytochemically in the crayfish gastrolith epithelium during the molting cycle in relation to the calcium transport mechanism. The ATPase activity was demonstrated by a new one-step lead citrate method. The reaction products were mainly restricted to the matrix of type II cell mitochondria. The Ca2+-ATPase activity was intensely observed in two calcium moving stages, the small gastrolith period which indicates the beginning of gastrolith formation, and the aftermolt, when the calcified gastrolith has been dissolved in the stomach and then reabsorbed from the stomach epithelium into the newly formed soft exoskeleton through the blood. Although the intensity of reaction products of Mg2+-ATPase varied in each stage, the enzymatic activity was observed throughout all molting stages. Reaction products were observed in all mitochondria, basement membranes, apical cytoplasmic membranes, and in some lysosomes. In conclusion, periodical changes in the two types of ATPase activity were seen in the mitochondria of gastrolith epithelium during the molting cycle, but Ca2+-ATPase activity seemed to be more prominently synchronized to the calcium movement in the gastrolith epithelium than Mg2+-ATPase activity. These results provide the strong evidence that Ca2+-ATPase may act strongly in the calcium transport system of crayfish molting.  相似文献   

3.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

4.
Summary The precipitation patterns of the following ultracytochemical methods in rat muscle cells were compared and examined critically: the potassium pyroantimonate method for calcium demonstration; the calcium phosphate technique for the Ca2+ — ATPase reaction; the formazan reaction for the demonstration of creatine kinase activity (all performed on heart muscle); and the lead phosphate technique for the Mg2+ — ATPase reaction in skeletal muscle. Using X-ray microanalysis, it was found that the antimonate precipitate contains only calcium as the precipitated ion in the vast majority of cases. Most probably it consists of pure calcium pyroantimonate. However, in myocytes showing the well-established precipitation pattern, the concentration of calcium was estimated to be about two orders of magnitude higher than the native concentration of total intracellular calcium. It is concluded that calcium ions diffuse freely from the extracellular space and from adjacent cells into cells containing antimonate and are precipitated mostly at sites where heterogeneous nucleation is facilitated by intracellular catalysts (biopolymers).As shown by the similar precipitation patterns for the four reactions compared, these catalysts are not specific to any of these reactions and are most probably neither calcium-binding sites nor sites of any one of the enzymes examined in the native cell.  相似文献   

5.
J A Firth  R Bock 《Histochemistry》1976,47(2):145-157
The distribution, histochemical properties and ultrastructural localization of adenosine triphosphate (ATP) hydrolyzing enzymes in the tanycyte ependyma of the third ventricle have been studied in female Wistar rats. Using a calcium-cobalt procedure and a lead capture technique, splitting of ATP could be demonstrated in perikarya and processes of tanycytes in the region of the ventromedial nucleus. The reaction showed no dependence on magnesium or sodium ions, did not occur with other monodi-, and tri-phosphates as substrates, and was inhibited by p-chlormercuribenzoate (PCMB) and sodium fluoride, but not by ouabain. With the calcium-cobalt method the highest intensity of reaction was found at pH 9.4, whereas the lead method gave optimal results at pH 6--8. At the ultrastructural level, the reaction product was found at the outer surface of the plasma membranes of tanycytes and reached its highest concentrations in the region of the region of the apical microvilli; From the findings it is concluded that splitting of ATP in tanycytes is due to a true ATPase. The enzyme might be involved in an active transport of substances by tanycytes.  相似文献   

6.
Erythrosin B (USFD&;C RED 3) inhibits the transport of calcium ions into isolated rabbit muscle sarcoplasmic reticulum vesicles with an IC50 of ~ 0.5 μM and inhibits the Ca2+Mg2+ ATPase activity with an IC50 of ~ 1 μM. The dye also binds to this tissue with an apparent Kd of ~ 300 nM. Other iodinated and brominated fluorescein analogs and blue dextran also inhibit ATPase activity and displace bound dye, suggesting that erythrosin may bind to a site near to but not identical with the nucleotide site. The dye should prove to be a useful probe for transport and ATPase activity.  相似文献   

7.
Summary Periodical changes in Na+–K+-ATPase, Ca2+–ATPase and non-specific alkaline-phosphatase activity were observed using cytochemical techniques in the posterior caeca of the crustacean amphipod, Orchestia cavimana, during the moult cycle. These changes were considered in relation to the calcium transport mechanisms in the posterior caecal epithelium. For both ATPases as well as alkaline phosphatase, the specific reaction products were most intense during the pre-exuvial period, i.e. when calcium is slowly transported against a concentration gradient: the localization of Na+–K+-ATPase activity in microvilli and the upper extracellular channels strongly supports the hypothesis that this enzyme is involved in an indirect, sodium-dependent mechanism for the transport of calcium. The detection of Ca2+-ATPase activity in microvilli would seem to indicate that this enzyme plays a role in the direct, active extrusion of Ca2+ at this level. Although the role of alkaline phosphatase in the transport of calcium remains unclear, the histochemical detection of this enzymatic activity throughout the apical part of the caecal epithelium suggests that this enzyme may be involved in calcium secretion. In post-exuvial period, we found only weak specific reaction products, thus indicating a reduced active calcium transport as these ions are rapidly reabsorbed down the concentration gradient.  相似文献   

8.
The subcellular localization and biochemical characterization of calcium transport were studied in the unicellular green alga Mesotaenium caldariorum. Membrane fractions prepared by osmotic lysis of Mesotaenium protoplasts exhibit high rates of ATP-dependent calcium uptake. Sucrose gradient centrifugation separates two pools of activity, which display specific activities for calcium transport as high as 15 nanomoles Ca2+ per minute per milligram of protein. Marker enzyme analysis shows that this dual distribution of calcium transport activity is similar to that of vanadate-insensitive ATPase and pyrophosphatase, activities considered to be associated with the tonoplast. Plasma membranes, endoplasmic reticulum vesicles, mitochondrial membranes, and thylakoids band at higher densities than either calcium transport fraction. Both pools of ATP-dependent calcium uptake contain two components which are not separable on sucrose gradients but can be distinguished on the basis of inhibitor sensitivity. One component is inhibited by nigericin or trimethyltin chloride (I50 values of 3 nanomolar and 4 micromolar, respectively), while the other component is vanadate sensitive (I50 of 25 micromolar). These results suggest that direct Ca2+ transport and Ca2+/H+ antiport activities are present in both sucrose gradient fractions.  相似文献   

9.
Elzam OE  Hodges TK 《Plant physiology》1968,43(7):1108-1114
Experimental conditions which optimize both substrate- and ATP-dependent Ca2+ transport in corn (Zea mays) mitochondria have been determined. It has been found that a substrate (pyruvate + succinate) dependent, Pi independent, binding of Ca2+ occurs. This reaction is very rapid and complete in less than 30 seconds. For massive accumulation of calcium, Pi is essential. Phosphate is accumulated along with the calcium and the ratio of Ca:Pi accumulated is about 1.6:1 indicating the precipitation of hydroxyapatite inside the mitochondria.

The activation energies and Michaelis constants for both the substrate- and ATP-driven reactions have been determined. It has also been shown that the substrate-driven system is more efficient in Ca2+ accumulation than the ATP-driven system. This is partially due to the fact that Mg2+ is essential for the ATP-driven system but not for the substrate-driven system and that Mg2+ acts as a strong competitor of Ca2+ transport. The effect of other inorganic ions on Ca2+ transport energized by both substrate and ATP were examined.

The results lend support to the hypothesis that high energy intermediates of oxidative phosphorylation participate directly in Ca2+ binding and transport in plant mitochondria.

  相似文献   

10.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

11.
Summary The distribution, histochemical properties and ultrastructural localization of adenosine triphosphate (ATP) hydrolyzing enzymes in the tanycyte ependyma of the third ventricle have been studied in female Wistar rats.Using a calcium-cobalt procedure and a lead capture technique, splitting of ATP could be demonstrated in perikarya and processes of tanycytes in the region of the ventromedial nucleus. The reaction showed no dependence on magnesium or sodium ions, did not occur with other monodi-, and tri-phosphates as substrates, and was inhibited by p-chlormercuribenzoate (PCMB) and sodium fluoride, but not by ouabain. With the calciumcobalt method the highest intensity of reaction was found at pH 9.4, whereas the lead method gave optimal results at pH 6–8.At the ultrastructural level, the reaction product was found at the outer surface of the plasma membranes of tanycytes and reached its highest concentrations in the region of the apical microvilli.From the findings it is concluded that splitting of ATP in tanycytes is due to a true ATPase. The enzyme might be involved in an active transport of substances by tanycytes.This work has been supported by a grant from the Landesamt für Forschung, Nordrhein-Westfalen (Fed. Rep. of Germany). In addition, a European Collaboration Grant from the Wellcome Trust, London, is gratefully acknowledged  相似文献   

12.
Numerous cytochemical studies have reported that calcium-activated adenosine triphosphatase (Ca2+-ATPase) is localized on the abluminal plasma membrane of mature brain endothelial cells. Since the effects of fixation and co-localization of ecto-ATPase have never been properly addressed, we investigated the influence of these parameters on Ca2+-ATPase localization in rat cerebral microvessel endothelium. Formaldehyde at 2% resulted in only abluminal staining while both luminal and abluminal surfaces were equally stained following 4% formaldehyde. Fixation with 2% formaldehyde plus 0.25% glutaraldehyde revealed more abluminal staining than luminal while 2% formaldehyde plus 0.5% glutaraldehyde produced vessels with staining similar to 4% and 2% formaldehyde plus 0.25% glutaraldehyde. The abluminal reaction appeared unaltered when ATP was replaced by GTP, CTP, UTP, ADP or when Ca2+ was replaced by Mg2+ or Mn2+ or p-chloromercuribenzoate included as inhibitor. But the luminal reaction was diminished. Contrary to previous reports, our results showed that Ca2+-specific ATPase is located more on the luminal surface while the abluminal reaction is primarily due to ecto-ATPase. The strong Ca2+-specific-ATPase luminal localization explains the stable Ca2+ gradient between blood and brain, and is not necessarily indicative of immature or pathological vessels as interpreted in the past.  相似文献   

13.
The hen oviduct shell gland is a highly active calcium-transporting epithelial tissue which is responsible for the mineralization of the egg shell. We have identified a calcium-stimulated ATPase present at high specific activity in membrane preparations from shell gland mucosal shavings. In the presence of optimal MgCl2 (5 mm) and a Ca2+ buffer, ATP hydrolysis was stimulated by addition of low concentrations of free Ca2+ (K0.5 ~0.4 μm); but not by similar concentrations of Mn2+, Zn2+, Co2+, or La2+. This stimulation was specific for ATP; there was little or no effect of Ca2+ on hydrolysis of ADP, AMP, GTP, ITP, or p-nitrophenyl phosphate. Calcium-stimulated ATPase activity was inhibited by chlorpromazine, trifluoperazine, and quercetin, as well as by sulfhydryl-blocking agents, but not by oligomycin or ouabain. No significant effect of calmodulin was observed. Finally, low concentrations of free Ca2+ (10 to 100 μm) in the presence or absence of Mg2+ stimulated transfer of 32P from [γ-32P]ATP to a 105,000 molecular weight shell gland membrane protein. This phosphoprotein was sensitive to hydrolysis by heating or by hydroxylamine treatment at acidic pH, and its formation was not inhibited by addition of K+. The specific activity of Ca2+-ATPase in total membrane preparations from laying hen shell gland ranged from 80 to 150 nmol/min/ mg protein, similar to or greater than levels found in purified plasma membrane fractions from a variety of tissues. No significant activity was found in membrane preparations from the magnum or isthmus regions of the oviduct, which are not involved in egg shell calcification. The characteristics of the Ca2+-ATPase, its high specific activity, and its preferential localization in the shell gland region of the oviduct suggest a role for an ATP-dependent calcium transport system in egg shell mineralization.  相似文献   

14.
Basolateral plasma membrane vesicles of rat small intestinal epithelium accumulate calcium through an ATP-dependent pumping system. The activity of this system is highest in duodenum and decreases towards the ileum. This distribution along the intestinal tract is similar as the active calcium absorption capacity of intact intestinal epithelial segments. ATP-dependent calcium uptake in basolateral membrane vesicles from duodenum and ileum increased significantly after repletion of young vitamin D-3-deficient rats with 1α,25-dihydroxy-vitamin D-3. Ca2+-ATPase activity in duodenal basolateral membranes increased to the same extend as ATP-dependent calcium transport, but (Na+ + K+)-ATPase activity remained unaltered.  相似文献   

15.
Europium luminescence from europium bound to sarcoplasmic reticulum (Ca2+ Mg2+)-ATPase indicates that there are two high affinity calcium binding sites. Furthermore, the two calcium ions at the binding sites are highly coordinated by the protein as the number of H2O molecules surrounding the Ca2+ ions are 3 and 0.5. In the presence of ATP, calcium ions are occluded even further down to 2 and zero H2O molecules, respectively. The Ca2+ - Ca2+ intersite distance is estimated to be 8–9 Å and the average distance from the Ca2+ sites to CrATP is about 18 Å.Digestion of the (Ca2+ + Mg2+)-ATPase at the T2 site (Arg 198) causes uncoupling of Ca2+-transport from ATPase activity while calcium occlusion due to E1-P formation remains unchanged. Further tryptic digestion beyond T2 and in the presence of ATP diminishes Ca2+ occlusion to zero while 50% of the ATPase hydrolytic activity remains. Tryptic digestion beyond T2 and in the absence of ATP diminishes ATPase hydrolytic activity to 50% of normal while Ca2+ occlusion remains intact. These data are consistent with a mechanism in which the functional enzyme must be in the dimeric form for occlusion and calcium uptake to occur, but each monomer can hydrolyze ATP.  相似文献   

16.
Posterior gills (No. 7 and 8) of shore crabsCarcinus maenas were homogenized and fractionated by means of differential and density gradient centrifugation. Employment of marker enzymes Na-K-ATPase and carbonic anhydrase for plasma membranes and cytochrome oxidase for mitochondria showed that these structural elements were separated. Ultramicroscopic investigations of combined fractions confirmed the presence of the respective mitochondrial and vesicular plasma membrane structures. An ATPase which did not depend on the presence of sodium (20 mM) ions in the incubation medium but on the presence of potassium (20 mM) ions only was found in the mitochondrial fractions. The mitochondrial ATPase was tightly bound to cellular particulates and activated approximately threefold by bicarbonate (20 mM) ions. The activity of this ATPase was nearly completely inhibited by oligomycin (1 μg ml−1) and greatly inhibited by low levels (5 mM) of thiocyanate and calcium ions, the Ki for Ca2+ being ca 4 mM. The results obtained confirm literature data on high mitochondrial densities in crab gills and allow the assumption of significant rates of energy metabolism in these organs. Considering its properties the mitochondrial ATPase is clearly distinct from crab gill Na-K-ATPase and can be measured specifically in samples containing Na-K-ATPase. Mitochondrial ATPase is therefore considered a suitable and reliable marker enzyme for mitochondria.  相似文献   

17.
Cooperativity of the calcium switch of regulated rabbit actomyosin system   总被引:5,自引:0,他引:5  
Summary The concentration range required for calcium activation of skeletal myofibrillar ATPase activity has previously been attributed to simultaneous binding of two calcium ions to each troponin. We present data representative of the majority of myofibrillar preparations and data with acto subfragment-1 (S-1) whose calcium activation of ATPase activity occurs over a much too narrow range of calcium concentrations to be so explained. S-1 binding significantly broadened the range of Ca2+ concentrations over which activation occurred but not to the extent that is associated with simultaneous binding of 2 calcium ions.  相似文献   

18.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    19.
    A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (ww) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

    20.
    A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (w/w) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号