首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn ( Zea mays L., B73 × Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 m M CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 μ M ) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of I-aminocyclopropane-I-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.  相似文献   

2.
Germination and seedling growth of cotton: salinity-calcium interactions   总被引:8,自引:2,他引:6  
Abstract. The effects of NaCl salinity on germination and early seedling growth of cotton were studied. Germination was both delayed and reduced by 200 mol m−3 NaCl in the presence of a complete nutrient medium. Seedlings, 7–9 d old, were greatly reduced in fresh weight by salinity. The addition of supplemental Ca2+ (10 mol m−3 as SO42− or Cl) to the medium did not improve germination but, to a large degree, offset the reduction in root growth caused by NaCl. Roots growing in the high salt medium without supplemental Ca2+ appeared infected by microbes. The cation specificity of the beneficial Ca2+ effect on growth was ascertained by testing additions of MgSO4 or KCl to the NaCl treatments. The contents of K4 and Ca2+ were reduced in both roots and shoots by the NaCl treatments. Supplemental Ca2+ partially offset this effect for K4 in the roots and for Ca2+ in both roots and shoots. Sodium contents were not affected by the supplemental Ca2+. It is concluded that the beneficial effect of high Ca2+ concentrations on root growth of cotton seedlings in a saline environment may be due to maintenance of K/Na-selectivity and adequate Ca status in the root.  相似文献   

3.
Solanum elaeagnifolium Cav. fruits contain high concentrations of steroidal saponins. Treatment of 3-day-old clover seedlings with aqueous fruit extracts modified Ca2+ uptake without significantly altering K+ and H2PO4 uptake. The extracts increased Ca2+ uptake in the concentration range of 0.2 to 20 m M Ca2+. Uptake curves could be represented by two phases. In the lower phase (0.2-1.0 m M Ca2+), this change could be related to an increase in Vmax. Pretreatment of seedlings with saponin extracts significantly reduced ATP-dependent Ca2+ uptake and Ca2+-dependent ATPase activity in a fraction isolated from root homogenates by centrifugation at 1500 g for 15 min. Saponins purified from S. eleagnifolium extracts by thin-layer chromatography modified in vitro the Ca2+-ATPase activity of this fraction, indicating that the steroid may act directly on Ca2+ transport across membranes.  相似文献   

4.
Increases in cytosolic free Ca2+ ([Ca2+]cyt) are common to many stress-activated signalling pathways, including the response to saline environments. We have investigated the nature of NaCl-induced [Ca2+]cyt signals in whole Arabidopsis thaliana seedlings using aequorin. We found that NaCl-induced increases in [Ca2+]cyt are heterogeneous and mainly restricted to the root. Both the concentration of NaCl and the composition of the solution bathing the root have profound effects on the magnitude and dynamics of NaCl-induced increases in [Ca2+]cyt. Alteration of external K+ concentration caused changes in the temporal and spatial pattern of [Ca2+]cyt increase, providing evidence for Na+-induced Ca2+ influx across the plasma membrane. The effects of various pharmacological agents on NaCl-induced increases in [Ca2+]cyt indicate that NaCl may induce influx of Ca2+ through both plasma membrane and intracellular Ca2+-permeable channels. Analysis of spatiotemporal [Ca2+]cyt dynamics using photon-counting imaging revealed additional levels of complexity in the [Ca2+]cyt signal that may reflect the oscillatory nature of NaCl-induced changes in single cells.  相似文献   

5.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

6.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

7.
Abstract: Calcium is required to sustain fast axonal transport in sensory neurons of frog and cat. We studied the Ca2+ dependence of fast axonal transport in the motoneurons of the lower spinal cord from frog. The accumulation of acetylcholinesterase at a crush on the ventral roots was used to follow axonal transport. Two types of experiments were performed: modification of the medium bathing the ventral roots, alone, and modification of the medium bathing the spinal cord and ventral roots. Incubation (17-18 h) of the ventral roots in Ca2+-free medium markedly inhibited acetylcholinesterase transport, a finding that demonstrates a Ca2+ requirement for fast axonal transport in motoneurons; when 4 m M MgCl2 was added to the Ca2+-free medium, transport was also greatly reduced. During incubation of the ventral roots in normal medium supplemented with 0.18 m M CoCl2 transport proceeded normally; but when the Co2+ concentration was raised to 1.8 m M , transport was diminished as drastically as in the Ca2+-free medium. Incubation of the spinal cord and ventral roots in medium containing 0.18 m M CoCl2 did not reduce the accumulation of acetylcholinesterase at the crush. Similarly, accumulation of acetylcholinesterase at a crush on the dorsal root was not significantly reduced by exposure of the dorsal root ganglion and root to 0.18 m M Co2+. Exposure of sensory cell bodies to 0.18 m M Co2+ thus produces differential effects on transport of acetylcholinesterase and on transport of newly synthesized radiolabeled protein.  相似文献   

8.
A stimulation of the abscisic acid (ABA)-induced increase in proline was observed in leaf segments of barley ( Hordeum vulgare L. cv. Georgie) if K+ or Na+ were supplied in the external medium as salts of monovalent anions such as NO3, Br, Cr and I, but not when sulphate or phosphate were used. To a lesser extent, the effect was evident also with RbCl, but it did not occur when chlorides of Li+. Cs+, NH4+, Mg:+ and Ca2+ were used. Both KC1 and NaCl in the concentration range 2–100 m M influence the ABA-dependent proline accumulation to the same extent; the increase induced was about 100% at 10 m M , and reached a maximum between 60 and 100 m M. The effect is not due to the osmotic activity of the salts and does not seem to depend on changes in K+ and Na+ levels within the leaf tissue, but it is somehow linked to their external concentration. The existence of a specific interaction between ABA and K+ or Na+, possibly at the cell membrane level, is proposed.  相似文献   

9.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

10.
Hasenstein, K. H. and Evans, M. L. 1988. The influence of calcium and pH on growth in primary roots of Zea mays. - Physiol. Plant. 72: 466–470.
We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 × Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 m M CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 m M MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.  相似文献   

11.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

12.
Development of salt-tolerant genotypes is central both to remediation of salinity-affected land and to meet increasing global food demand, which has been driving expansion of cropping into marginal areas. The bottleneck of any breeding programme is the lack of a reliable screening technique. This study tested the hypothesis that the ability of plants to retain K+ under saline conditions is central to their salt tolerance. Using seven barley cultivars contrasting in salt tolerance (CM72, Numar, ZUG293, ZUG95, Franklin, Gairdner, ZUG403), a comprehensive study was undertaken of whole-plant (growth rate, biomass, net CO2 assimilation, chlorophyll fluorescence, root and leaf elemental and water content) and cellular (net fluxes of H+, K+, Na+ and Ca2+) responses to various concentrations of NaCl (20–320 m m ). Na+ selective microelectrodes were found to be unsuitable for screening purposes because of non-ideal selectivity of the commercially available Na+ LIX. At the same time, our results show very strong negative correlation between the magnitude of K+ efflux from the root and salt tolerance of a particular cultivar. K+ efflux from the mature root zone of intact 3-day-old seedlings following 40 min pretreatment with 80 m m NaCl was found to be a reliable screening indicator for salinity tolerance in barley. As a faster and more cost-effective alternative to microelectrode measurements, a procedure was developed enabling rapid screening of large numbers of seedlings, based on amount of K+ leaked from plant roots after exposure to NaCl.  相似文献   

13.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

14.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

15.
Pb and Cd uptake in rice roots   总被引:9,自引:0,他引:9  
Pb and Cd are heavy metal pollutants that inhibit plant growth. Using a cultivated rice variety (Dongjin, Oryza sativa L.), we studied how the transport and toxicity of Pb2+ and Cd2+ are affected by the presence of K+, Ca2+ or Mg2+. K+ had a little effect on uptake or toxicity of Pb2+ and Cd2+. Ca2+ or Mg2+ blocked both Cd2+ transport into rice roots and Cd2+ toxicity on root growth, which suggested that their detoxification effect is directly related to their blocking of entry of the heavy metals. Similarly, Ca2+ blocked both Pb2+ transport into the root and Pb2+ toxicity on root growth. The protective effect of Ca2+ on Pb2+ toxicity may be related to its inhibition of the heavy metal accumulation in the root tip, a potential target site of Pb2+ toxicity. Mg2+ did not ameliorate the Pb2+ toxicity on root growth as much as Ca2+ did, although it decreased Pb2+ uptake into roots similarly as Ca2+ did. These results suggest that the protective effect of Ca2+ on Pb2+ toxicity may involve multiple mechanisms including competition at the entry level, and that Pb2+ and Cd2+ may compete with divalent cations for transport into roots of rice plants.  相似文献   

16.
17.
The long-term effect of tentoxin on K+;, Ca2+ and total phosphorus (P) concentrations in the roots and shoots of 7- and 14-day-old seedlings of winter wheat ( Triticum aestivum L. cv. Martonvásári-8) was studied. Growth (dry weight) and shoot to root ratios (dry weight and mineral concentrations) were also estimated. One p M tentoxin increased the shoot to root ratio for dry weight after a 14-day period of application. The concentration of Ca2+ slightly increased in the shoot. In roots, tentoxin caused a 30% higher accumulation of Ca2+ after 7 days, which did not change with treatment during the following 7 days. The accumulation of Ca2+ was enhanced by increasing concentrations of tentoxin. K+ and total P levels increased in roots but decreased in shoots after 7 days. However, they were redistributed between root and shoot during days 8–14 of tentoxin treatment. The effect of tentoxin is explained as a stimulation of ion transport mainly into the vacuoles of the immature metaxylem elements. It is suggested that tentoxin and other microbial products effective at very low concentrations may have a general significance in promoting plant infection or symbiosis via the modification of physiological or biochemical processes.  相似文献   

18.
Uptake and distribution of Ca+, Mg2+ and K2+ were investigated in plants of cucumber ( Cucumis sativus L. var. Cila) which had been cultivated for 12, 19, 32, or 53 days in complete nutrient solution with 1.0 m M Ca2+, 2.0 m M Mg2+ and 2.0 m M K+. The + concentration was about the same in roots and shoots, while the Ca2+ and Mg2+ concentrations were low in roots compared to shoots. The K+ concentration decreased with increasing leaf age, while the Ca2+ and Mg2+ concentrations increased, except in older plants with flowers and fruits, where an increased concentration was found in the youngest leaves. This is discussed in connection with increased indoleacetic acid (IAA) synthesis in the shoot. Excision of leaves at different levels from 21-day-old plants, followed by uptake for 24 h from the nutrient solution on days 22 and 23, resulted in no immediate reduction in Ca2+ (45Ca) uptake. Transport of Ca2+ increased to leaves above and below the excision point and total Ca2+ uptake remained at the same level as for the intact plant. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root while the distribution in the shoot is regulated by the accessability of negative binding sites.  相似文献   

19.
The tolerances of Columbia Arabidopsis thaliana (L.) Heynh. to NaCl, L-asparagine (L-Asn) and D-asparagine (D-Asn) during seedling establishment on sterile agar medium were determined. Germination and the establishment of upright seedlings with expanded green cotyledons were increasingly inhibited by NaCl concentrations from 20 to 180 m M and radicle growth was prevented at 225 m M NaCl. Tolerance of established seedlings to NaCl was similar at these concentrations. Seedling establishment was prevented at 20 m M L-Asn and 60 m M D-Asn, but L-Asn was not toxic to established seedlings. At lower concentrations, exogenous L- and D-Asn enhanced NaCl tolerance during germination and seedling establishment. Inhibition of seedling establishment by NaCl concentrations below 225 m M was reduced by the addition of L- and D-Asn to the medium. Maximal reduction of NaCl inhibition occurred between 2 and 4 m M for both L- and D-Asn. Higher concentrations of NaCl prevented establishment whether exogenous Asn was present or not. Reduction of NaCl inhibition occurred to the same extent whether L-Asn was presented simultaneously with the NaCl or preloaded for up to 24 h. The total seedling content of Na+ increased about 4-fold to 55 μg (mg dry weight)−1 as the medium concentration of NaCl was increased from 9 μ M to 150 m M NaCl. Total K+ content declined about 80% from about 34 μg (mg dry weight)−1 over the same range of NaCl concentrations. The Na+ uptake and K+ efflux by whole seedlings were similar whether or not NaCl tolerance was increased by exogenous Asn.  相似文献   

20.
Abstract: Voltage-dependent 45Ca2+ uptake into rat whole brain synaptosomes was measured after 3-s KCl-induced depolarization to investigate possible inhibitory effects of calcium antagonists, nitrendipine, nimodipine, and nisoldipine. At a Ca2+ concentration of 1.2 m M , nitrendipine, in concentrations ranging from 0.1 n M to 10 μ M , had no effect on 45Ca2+ uptake. When the Ca2+ concentration was lowered to 0.06 and 0.12 m M , nitrendipine, 10 μ M , inhibited 45Ca2+ uptake in response to 109 m M KCl depolarization. However, in a separate concentration response study, nitrendipine, nimodipine, and nisoldipine, 0.1 n M to 10 μ M , failed to alter the uptake of 45Ca2+ (0.06 m M Ca2+) into 30 m M KCl-depolarized synaptosomes. The high concentrations of these agents required to depress 45Ca2+ uptake indicate that the dihydropyridine calcium antagonists are considerably less potent in brain tissue than in peripheral tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号