首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper and antibiotic resistance was experimentally studied for the first time in marine heterotrophic bacteria that were isolated from microfoulings of copper and copper-alloy test plates in coastal waters of Vietnam. Resistance to copper ions and to at least one of the antibiotics tested was detected in 78.7% of the isolates. A total of 28 models of antibiotic resistance were found in the bacteria. All strains isolated from the foulings of the copper plates were resistant to seven or more antimicrobials. The microfouling communities of copper and copper-alloy plates were dominated by Bacillus spp. and Staphylococcus spp. Copper and antibiotic resistance was statistically independent of the taxon of the tested bacteria.  相似文献   

2.
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.  相似文献   

3.
Conservation of the response regulator gene gacA in Pseudomonas species   总被引:4,自引:1,他引:3  
The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains isolated from different plant-associated environments. Polymerase chain reaction analysis and Southern hybridization showed that gacA is highly conserved within the genus Pseudomonas: multiple strains of different Pseudomonas species all responded positively to the probe, whereas no response was obtained from 18 other strains representing 14 species that belong to eight different genera of Gram-negative bacteria other than Pseudomonas. Furthermore, from a total of approximately 550 indigenous bacterial isolates obtained from the rhizosphere of wheat, all isolates that hybridized with the gacA probe were classified as Pseudomonas spp. by group-specific primers. Isolates that did not respond with the gacA probe and primers were identified as bacterial genera other than Pseudomonas, including Stenotrophomonas, Cryseomonas and Comamonas spp. These results indicate that gacA can be used as a complementary genetic marker for detection of Pseudomonas spp. in environmental samples. Phylogenetic relationships inferred from the newly sequenced gacA fragments and the sequences of gacA homologues present in the databases, showed six distinct clusters that correspond to the following bacterial families: Pseudomonaceae, Enterobacteriaceae, Alteromonadaceae, Vibrionaceae, Burkholderia and Xanthomonas. Within the Pseudomonadaceae and Enterobacteriaceae, polymorphisms within gacA and its homologues allowed identification of six and five subclusters respectively. Comparison of the gacA gene and GacA protein-based trees with the tree inferred from 16S rDNA sequences yielded a similar overall clustering. These results suggest that gacA and its homologues may provide complementary markers for phylogenetic studies of Pseudomonas spp. and Gram-negative bacteria other than Pseudomonas.  相似文献   

4.
AIMS: Pseudomonas spp. are considered the most important milk spoilage organisms. Here we describe development of a fluorescence in situ hybridization (FISH) probe specific for detection and enumeration of Pseudomonas spp. in milk. METHODS AND RESULTS: 16S rRNA sequences were analysed to develop specific oligonucleotide probe for the genus Pseudomonas. Twenty different Pseudomonas spp. and 23 bacterial species from genera other than Pseudomonas (as negative controls) were tested. All tested Pseudomonas spp. yielded a positive FISH reaction, whereas negative controls showed no FISH reaction except for Burkholderia cepacia that showed a relatively weak FISH reaction. The FISH assay specifically stains Pseudomonas in milk when the milk contains a mixture of other bacterial species. The FISH assay takes 2 h and compares favourably with current culturing methods, which take a minimum of 48 h. Specificity of the probe was validated using polymerase chain reaction to selectively amplifying the Pseudomonas rDNA gene and sequencing the gene products. CONCLUSIONS: The method presented in this study allows simultaneously detection, identification and enumeration of Pseudomonas spp. in milk. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid and accurate enumeration of Pseudomonas facilitates the identification of specific contamination sources in dairy plants, the accurate validation of pasteurization treatments and the prediction of shelf life of processed milk.  相似文献   

5.
Fluorescent Pseudomonas spp. isolated from fruiting bodies (FB) of Cantharellus cibarius were characterized physiologically and genetically and were compared with fluorescent Pseudomonas from forest soil and with sequences from the GenBank database. Pseudomonas spp. from FB differed physiologically from isolates from soil lacking FB and had some similarities with the strains obtained from soil underneath the FB. Analyses of the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) patterns and partial sequencing analysis of the 16S-rDNA region indicated that the bacteria isolated from these environments were different. However, there was no specific Pseudomonas genotype restricted to the FB environment. Utilization of the reported fungal exudates trehalose and mannitol may explain how millions of bacteria survive in the C. cibarius FB without deteriorating the fungal mycelium. The importance of the metabolic characterization of bacteria and the possible mechanisms involved in the association with C cibarius are discussed. Our study showed that standard processes for bacterial identification, e.g., Biolog and 16S-rDNA are insufficient until databases for different ecosystems are created.  相似文献   

6.
The bacterial flora were determined qualitatively and quantitatively on samples taken at various stages of handling several species of fish of commercial importance in Queensland. There was an overall increase in the number of bacteria during handling and processing; both the composition and quantity of the bacterial flora of individual samples taken at each stage of handling varied widely. Members of the genus Micrococcus formed the major proportion of the flora of freshly caught fish. Pseudomonas and Moraxella spp. were predominant amongst the bacterial flora able to grow at 2° and constituted the bulk of the population in samples with high bacterial counts. This psychrophilic population was markedly reduced at the filleting stage. A medium prepared by the action of trypsin on a fish muscle homogenate was used to test bacterial isolates for their ability to produce odours. Forty-three per cent of the pseudomonad isolates produced sulphydryl odours at 5°. Only small proportions of the other groups produced detectable odours. Members of the genus Pseudomonas were considered the most important fish spoilage bacteria under the conditions found in Queensland.  相似文献   

7.
Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found.  相似文献   

8.
Immunofluorescence assays for marine ammonium- and nitrite-oxidizing bacteria were used to assess the diversity of nitrifying bacteria isolated from marine environments. The antisera show relatively broad specificity, in that each reacts with several strains of the same physiological type as the strain to which the antiserum was prepared. The antisera do not, however, react with any strains of differing physiological type. Seventy percent of the 30 unidentified ammonium-oxidizing isolates tested reacted with one or both of the antisera produced to marine ammonium-oxidizing strains, and 8 of the 9 unidentified nitrite-oxidizing strains tested reacted with 1 or more of the 3 nitrite oxidizer antisera used. Ammonium- and nitrite-oxidizing bacteria were enumerated in samples taken in a depth profile (to 750 m) in the Southern California Bight by immunofluorescence assays for two ammonium oxidizers and two nitrite oxidizers. Average abundances of the two types of nitrifiers were 3.5 × 105 and 2.8 × 105 cells liter−1, respectively. Nitrifiers constitute 0.1 to 0.8% of the total bacterial population in these samples.  相似文献   

9.
Aims:  To design a cyclic voltammetry (CV) procedure to check the electrochemical activity of bacterial isolates that may explain the electrochemical properties of biofilms formed in compost.
Methods and Results:  Bacteria catalysing acetate oxidation in garden compost were able to form electrochemically active biofilms by transferring electrons to an electrode under chronoamperometry. They were recovered from the electrode surface and identification of the isolates using 16S rRNA sequencing showed that most of them were Gammaproteobacteria, mainly related to Enterobacter and Pseudomonas spp. A CV procedure was designed to check the electrochemical activity of both groups of isolates. Preliminary CVs suggested that the bacteria were not responsible for the catalysis of acetate oxidation. In contrast, both groups of isolates were found to catalyse the electrochemical reduction of oxygen under experimental conditions that favoured adsorption of the microbial cells on the electrode surface.
Conclusions:  Members of the genera Enterobacter and Pseudomonas were found to be able to catalyse the electrochemical reduction of oxygen.
Significance and Impact of the Study:  This study has shown the unexpected efficiency of Enterobacter and Pseudomonas spp. in catalysing the reduction of oxygen, suggesting a possible involvement of these species in biocorrosion, or possible application of these strains in designing bio-cathode for microbial fuel cells.  相似文献   

10.
The objective of this study was to determine how an input of protein to lake water affects expression of a proteolytic potential and influences the abundance and composition of a specific group of bacteria. Pseudomonas spp. were chosen as a target group that can be recovered on selective growth media and contain both proteolytic and nonproteolytic strains. Amendment with 2 mg of casein per liter increased total proteinase activity (hydrolysis of [(3)H]casein) by 74%, leucine-aminopeptidase activity (hydrolysis of leucine-methyl-coumarinylamide) by 133%, bacterial abundance by 44%, and phytoplankton biomass (chlorophyll a) by 39%. The casein amendment also increased the abundance of culturable Pseudomonas spp. by fivefold relative to control microcosms but did not select for proteolytic isolates. Soluble proteins immunochemically related to the Pseudomonas fluorescens alkaline proteinase, AprX, were detected in amended microcosms but not in the controls. The expression of this class of proteinase was confirmed exclusively for proteolytic Pseudomonas isolates from the microcosms. The population structure of Pseudomonas isolates was determined from genomic fingerprints generated by universally primed PCR, and the analysis indicated that casein amendment led to only minor shifts in population structure. The appearance of AprX-like proteinases in the lake water might thus reflect a general induction of enzyme expression rather than pronounced shifts in the Pseudomonas population structure. The limited effect of casein amendment on Pseudomonas population structure might be due to the availability of casein hydrolysates to bacteria independent of their proteinase expression. In the lake water, 44% of the total proteinase activity was recovered in 0.22-microm-pore-size filtrates and thus without a direct association with the bacteria providing the extracellular enzyme activity. Since all Pseudomonas isolates expressed leucine-aminopeptidase in pure culture, proteolytic as well as nonproteolytic pseudomonads were likely members of the bacterial consortium that metabolized protein in the lake water.  相似文献   

11.
One hundred and four strains of heterotrophic bacteria have been isolated and characterized from two species of bivalve mollusks cultivated in the Gulf of Nha Trang (Vietnam) and from the water of a mariculture farm. The isolates have been identified on the basis of morphological, physiological, biochemical, and chemotaxonomic properties, as well as by the content of G+C bases in DNA. In the microflora of mollusks, Vibrio alginolyticus was predominant; the pathogenic species V. harveyi and V. splendidus were found as well. Staphylococci and bacilli occupied the second place in abundance after vibrios. In addition, coryneforms and enterobacteria, as well as Pseudomonas spp. and Pseudoalteromonas spp., were revealed. The composition of the water microflora was more diverse as compared with the microflora of mollusks. In the water, Bacillus spp., Vibrio spp., and Pseudomonas spp. were predominant. Brevibacterium spp. and other coryneform bacteria, as well as enterobacteria, occurred in significant amounts. In addition, Pseudoalteromonas spp., Marinococcus sp., Halobacillus sp., Shewanella sp., Sulfitobacter sp., and bacteria of the CFB cluster were noticed. The presence of pathogenic and conditionally pathogenic bacterial species in the water and mollusks is probably the reason for the high death rate of cultivated animals at the mariculture farm.  相似文献   

12.
Aim:  To isolate and identify black pepper ( Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease.
Methods and Results:  Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici . Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in green house trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa ( Pseudomonas EF568931), IISRBP 25 as P. putida ( Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium ( B. megaterium EU071712) based on 16S rDNA sequencing.
Conclusion:  Black pepper associated P. aeruginosa , P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper.
Significance and Impact of the Study:  This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.  相似文献   

13.
Specific antisera were raised in rabbits to 19 methanogenic bacteria representing the species available in pure culture at the present time. The antisera were characterized, labeled, and organized in a bank to serve as a source of material for preparation of antibody probes and thus provide standardized reagents for immunological analysis of methanogens. An indirect immunofluorescence procedure was standardized for optimal staining of homologous and heterologous bacterial strains. Two immunoenzymatic assays were developed: (i) a simple slide assay, useful for rapid antibody detection in small samples, antibody titrations, and disclosure of cross-reactions among methanogens, and (ii) a quantitative method. The latter is useful for quantification of antigenic relatedness. Procedural details were developed to obtain optimal bacterial preparations for use as immunogens to raise antibodies in vivo, and as antigens for antibody assay in vitro.  相似文献   

14.
Degradation of milk components through various enzymatic activities associated with the contamination of dairy products by Pseudomonas spp. can reduce the shelf life of processed milk. Reliable methods for differentiating among Pseudomonas spp. strains are necessary to identify and eliminate specific sources of bacterial contamination from dairy processing systems. To that end, we assessed the genetic diversity and dairy product spoilage potentials among a total of 338 Pseudomonas spp. isolates from raw and pasteurized milk and from environmental samples collected from four dairy processing plants. The majority of isolates were identified as P. fluorescens and P. putida by API 20 NE. A total of 42 different ribotype patterns were identified among a subset of 81 isolates. The presence of many different ribotypes within this collection indicates high genetic diversity among the isolates and suggests multiple origins of contamination within the processing plant and in dairy products. The extracellular enzyme activity patterns among Pseudomonas isolates appeared to be associated with ribotypes. Isolates with the same ribotype frequently had the same extracellular protease, lecithinase, and lipase activities. For example, isolates grouped in ribotype 55-S-6 had the highest extracellular protease activity, while those in ribotypes 50-S-8 and 72-S-3 had the highest extracellular lipase activities. We conclude that ribotyping provides a reliable method for differentiating Pseudomonas strains with dairy food spoilage potential.  相似文献   

15.
Neoparamoeba pemaquidensis is a parasomal amoeboid protozoan identified as the agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar reared in sea-pens in Tasmania, Australia, and coho salmon Oncorhynchus kisutch farmed on the west coast of the USA. Outbreaks of AGD caused by immunologically cross-reactive paramoebae have also been reported in sea-farmed salmonids in several other countries. Complete 18S rDNA sequences were determined for respective paramoebae isolated from infected gills of salmon from Tasmania and Ireland, and N. pemaquidensis isolates from the USA and UK, including representative free-living isolates. Alignments over 2110 bp revealed 98.1 to 99.0% sequence similarities among isolates, confirming that paramoebae implicated in AGD in geographically distant countries were homologous and belonged to the same species, N. pemaquidensis. The results supported previous findings that N. pemaquidensis exists as a widely distributed, amphizoic marine protozoan. Partial 18S rDNA sequences were obtained for the ultrastructurally similar species, N. aestuarina, and for the morphologically similar but non-parasomal amoeba Pseudoparamoeba pagei. N. aestuarina had 95.3 to 95.7% sequence similarities with N. pemaquidensis strains, which distinguished 2 closely related but separate species. Neoparamoeba spp. were not analogous to P. pagei or to other marine Gymnamoebia. We designed 4 oligonucleotide primers based on elucidated 18S rDNA sequences and applied them to single-step and nested 2-step PCR protocols developed to identify N. pemaquidensis to the exclusion of apparently closely related and non-related protistan taxa. Nested PCR was able to detect the AGD parasite from non-purified, culture-enriched net microfouling samples from Atlantic salmon sea-pens in Tasmania, and confirmed that N. pemaquidensis was also responsible for AGD in chinook salmon O. tshawytscha in New Zealand. Our sequence and PCR analyses have now shown that AGD affecting 3 different salmonid species farmed in 4 countries are associated with N. pemaquidensis. A species-specific diagnostic PCR provides for the first time, a highly specific detection and identification assay for N. pemaquidensis that will facilitate future ecological and epidemiological studies of AGD.  相似文献   

16.
AIMS: To isolate and identify diazotrophic endophytes in the stem of Japanese sweetpotato cv. Koganesengan. METHODS AND RESULTS: Surface-sterilized and thinly sliced (1-2 mm) sweetpotato stem samples were incubated in test tubes with semi-solid modified Rennie (MR) medium. The test tubes were assayed for acetylene reduction activity (ARA) 5 days after incubation at 30 degrees C. Twelve isolates were obtained from MR plates inoculated with a loop of semi-solid MR medium from ARA+ tubes. However, ARA test showed that only nine isolates were diazotrophic and three were nondiazotrophic strains. Using the API 20E diagnostic kit, four diazotrophic isolates were identified as strains of Pantoea spp. and five isolates as Klebsiella spp. The nondiazotrophic bacteria were strains of Enterobacter spp. A diazotrophic isolate Pantoea sp. MY1 and nondiazotrophic isolate Enterobacter sp. MY2 were identified to the species level by full sequence analysis of 16S rRNA gene. The results showed that MY1 had 99.2% similarity to Pantoea agglomerans ATCC 27155 and MY2 had 99.5% similarity to Enterobacter asburiae ATCC 35953. CONCLUSION: The stem of sweetpotato cv. Koganesengan was colonized by diazotrophic endophyte P. agglomerans and nondiazotrophic endophyte E. asburiae. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is an essential step toward understanding the ecology and interaction between endophytic bacteria and sweetpotato.  相似文献   

17.

Background

In Africa, there are several problems with the specific identification of bacteria. Recently, MALDI-TOF mass spectrometry has become a powerful tool for the routine microbial identification in many clinical laboratories.

Methodology/Principal Findings

This study was conducted using feces from 347 individuals (162 with diarrhea and 185 without diarrhea) sampled in health centers in Dakar, Senegal. Feces were transported from Dakar to Marseille, France, where they were cultured using different culture conditions. The isolated colonies were identified using MALDI-TOF. If a colony was unidentified, 16S rRNA sequencing was performed. Overall, 2,753 isolates were tested, allowing for the identification of 189 bacteria from 5 phyla, including 2 previously unknown species, 11 species not previously reported in the human gut, 10 species not previously reported in humans, and 3 fungi. 2,718 bacterial isolates (98.8%) out of 2,750 yielded an accurate identification using mass spectrometry, as did the 3 Candida albicans isolates. Thirty-two bacterial isolates not identified by MALDI-TOF (1.2%) were identified by sequencing, allowing for the identification of 2 new species. The number of bacterial species per fecal sample was significantly higher among patients without diarrhea (8.6±3) than in those with diarrhea (7.3±3.4; P = 0.0003). A modification of the gut microbiota was observed between the two groups. In individuals with diarrhea, major commensal bacterial species such as E. coli were significantly decreased (85% versus 64%), as were several Enterococcus spp. (E. faecium and E. casseliflavus) and anaerobes, such as Bacteroides spp. (B. uniformis and B. vulgatus) and Clostridium spp. (C. bifermentans, C. orbiscindens, C. perfringens, and C. symbosium). Conversely, several Bacillus spp. (B. licheniformis, B. mojavensis, and B. pumilus) were significantly more frequent among patients with diarrhea.

Conclusions/Significance

MALDI-TOF is a potentially powerful tool for routine bacterial identification in Africa, allowing for a quick identification of bacterial species.  相似文献   

18.
Using protocols designed for the isolation of Shigella from environmental freshwater samples from different regions of Bangladesh, 11 bacterial strains giving rise to Shigella-like colonies on selective agar plates and showing serological cross-reaction with Shigella-specific antisera were isolated. Phylogenetic analyses revealed that three of the isolates were most closely related to Escherichia coli, four to Enterobacter sp., two to Stenotrophomonas, and two isolates belonged to the Gram-positive genus Aerococcus. The isolates cross-reacted with six different serotypes of Shigella and were, in each case, highly type-specific. Two of the isolates belonging to the Enterobacter and Escherichia genera gave extremely strong cross-reactivity with Shigella dysenteriae and Shigella boydii antisera, respectively. The Aerococcus isolates gave relatively weak but significant cross-reactions with S. dysenteriae. Western blot analysis revealed that a number of antigens from the isolates cross-react with Shigella spp. The results indicate that important Shigella spp. surface antigens are shared by a number of environmental bacteria, which have implications for the use of serological methods in attempts for the detection and recovery of Shigella from aquatic environments.  相似文献   

19.
A range of rRNA-targeted alkaline phosphatase-labelled oligonucleotide probes was tested for use as culture confirmation reagents for the rapid identification of micro-organisms. The probes were specific to clinically important bacteria ( Helicobacter pylori and Mycobacterium tuberculosis ), fish and shellfish pathogens ( Renibacterium salmoninarum and Vibrio vulnificus ), food spoilage bacteria ( Listeria spp. and L. monocytogenes ), for bacteria of biotechnological importance ( Streptomyces spp.) and for bacteria associated with the oil industry (Sulphate-reducing bacteria, SRB). A universal bacterial probe and a eukaryotic probe were included in the study as positive and negative controls, respectively. A total of 93 bacterial strains was screened. With the exception of a large number of cross-reactions of the SRB probe (specificity value of 29·4%) and a single cross-reaction of the R. salmoninarum probe (specificity value of 97·7%), dot blot analysis indicated that each probe hybridized 100% specifically to the organisms tested. A simple culture confirmation method was then developed using these probes to enable the identification of bacterial colonies using a simple hybridization procedure.  相似文献   

20.
The bacterial community structure in the Changjiang estuary was studied for comparison with future changes, related to the construction of the Three Gorges Dam. Population densities of bacteria in the surface water at station C1 estimated by CFU on marine agar plates and by DAPI direct count, were 2.8 x 10(4) ml(-1) and 4.2 x 10(5) ml(-1), respectively. Physicochemical properties of water, such as temperature and salinity, suggested that station C1 was affected by freshwater from the Changjiang River. Cluster analysis of the PCR-RFLP patterns obtained from 9 samples showed that the bacterial community structure at station C1 was different from the structure at the other stations. Bacterial diversity in the surface water at station C1 was studied based on the genotypes of the 250 clones of 16S rRNA, and on the phenotypes generated on Biolog GN plates for 70 isolates. Sequences of bacteria from two common marine groups, alpha- and gamma-Proteobacteria, were frequently observed. Some other divisions, including the beta-Proteobacteria, C/F/B group, low G+C gram positive, high G+C gram positive, chloroplasts, and relatives of Verrucomicrobia were also observed. The putative dominant species based on both genotype and phenotype analyses were close relatives of Alteromonas macleodii or Roseobacter spp. These results reflected the nutrient-rich environment at station C1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号