首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Factor Va (fVa) is inactivated by activated protein C (APC) by cleavage of the heavy chain at Arg306, Arg506, and Arg679. Site-directed mutagenesis of human factor V cDNA was used to substitute Arg306-->Ala (rfVa306A) and Arg506-->Gln (rfVa506Q). Both the single and double mutants (rfVa306A/506Q) were constructed. The activation of these procofactors by alpha-thrombin and their inactivation by APC were assessed in coagulation assays using factor V-deficient plasma. All recombinant and wild-type proteins had similar initial cofactor activity and identical activation products (a factor Va molecule composed of light and heavy chains). Inactivation of factor Va purified from human plasma (fVaPLASMA) in HBS Ca2+ +0.5% BSA or in conditioned media by APC in the presence of phospholipid vesicles resulted in identical inactivation profiles and displayed identical cleavage patterns. Recombinant wild-type factor Va (rfVaWT) was inactivated by APC in the presence of phospholipid vesicles at an overall rate slower than fVaPLASMA. The rfVa306A and rfVa506Q mutants were each inactivated at rates slower than rfVaWT and fVaPLASMA. Following a 90-min incubation with APC, rfVa306A and rfVa506Q retain approximately 30-40% of the initial cofactor activity. The double mutant, rfVa306A/506Q, was completely resistant to cleavage and inactivation by APC retaining 100% of the initial cofactor activity following a 90-min incubation in the presence of APC. Recombinant fVaWT, rfVa306A, rfVa506Q, and rfVa306A/506Q were also used to evaluate the effect of protein S on the individual cleavage sites of the cofactor by APC. The initial rates of rfVaWT and rfVa306A inactivation in the presence of protein S were unchanged, indicating cleavage at Arg506 is not affected by protein S. The initial rate of rfVa506Q inactivation was increased, suggesting protein S slightly accelerates the cleavage at Arg306. Overall, the data demonstrate high specificity with respect to cleavage sites for APC on factor Va and demonstrate that cleavages of the cofactor at both Arg306 and Arg506 are required for efficient factor Va inactivation.  相似文献   

2.
The inactivation of Factor Va by plasmin was studied in the presence and absence of phospholipid vesicles and calcium ions. The cleavage patterns of bovine Factor Va and its isolated subunits were analyzed using polyacrylamide gel electrophoresis, and the progress of inactivation was monitored by clotting assays and measurements of prothrombin activation using 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5-penta nediyl)amide. In addition, the ability of prothrombin and Factor Xa to protect Factor Va from inactivation by human plasmin was examined. The data presented indicate that the cofactor Factor Va is inactivated rapidly upon its interaction with human plasmin. The rate of inactivation is significantly enhanced in the presence of phospholipid vesicles, suggesting that the inactivation process is a membrane-bound phenomenon. The isolated D component (heavy chain of factor Va) was found to be slowly degraded by human plasmin, giving rise to cleavage products different from those obtained with activated protein C and Factor Xa. However, the 48- and 30-kDa fragments obtained from human plasmin degradation of component E (light chain of Factor Va) appear to be similar to those obtained following the proteolysis of the same subunit by activated protein C and Factor Xa.  相似文献   

3.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

4.
The binding of factor Va to phospholipid vesicles   总被引:5,自引:0,他引:5  
The analysis of free sulfhydryl groups in factor Va using dithiobis-(nitrobenzoic acid) (DTNB) indicated the presence of one accessible thiol in each of the two subunits of the cofactor. Intact factor Va contained one readily accessible sulfhydryl group under native conditions and approximately two such groups after denaturation. A comparison of the rate of modification of the accessible thiol in factor Va under native conditions to those observed with the isolated subunits indicated that the thiol present in component D of the cofactor was readily accessible to reaction with DTNB. Factor Va was reacted with the sulfhydryl-directed fluorophore N-(1-pyrene)maleimide, resulting in the concomitant loss of the accessible thiol with no detectable alteration in the activity of the cofactor. This fluorescent derivative of factor Va (Pyr-Va) was used to examine the binding of factor Va to phospholipid vesicles by fluorescence polarization. Fluorescence polarization of the pyrene moiety increased saturably when Pyr-Va was titrated with increasing concentrations of vesicles composed of phosphatidylcholine and phosphatidylserine (PS). Systematic analysis of the binding of Pyr-Va to PCPS (75% phosphatidylcholine, 25% PS) indicated that the binding interaction was characterized by a dissociation constant of 2.7 x 10(-9) M with 42 mol of PCPS bound per mol of Va at saturation. The data obtained by varying the PS content of the vesicles are consistent with the interpretation that the Va-combining site on the vesicle surface is composed of a discrete number of PS molecules. The binding of Pyr-Va to PCPS was independent of added calcium ion and could be reversed by the addition of unlabeled Va or isolated component E but not by component D. Analysis of the displacement curves indicated that native factor Va or isolated component E and Pyr-Va mutually excluded each other on the vesicle surface with identical affinities. Competition experiments conducted using component E digested by factor Xa or the isolated derivative peptides indicated that the cleavage of component E by factor Xa had no effect on the PCPS binding properties of this subunit. Further, the data obtained with the isolated peptides suggest that the lipid-binding domain of component E is present in the amino-terminal region of this subunit.  相似文献   

5.
The procoagulant function of activated factor V (FVa) is inhibited by activated protein C (APC) through proteolytic cleavages at Arg306, Arg506, and Arg679. The effect of APC is potentiated by negatively charged phospholipid membranes and the APC cofactor protein S. Protein S has been reported to selectively stimulate cleavage at Arg306, an effect hypothesized to be related to reorientation of the active site of APC closer to the phospholipid membrane. To investigate the importance of protein S and phospholipid in the APC-mediated cleavages of individual sites, recombinant FV variants FV(R306Q/R679Q) and FV(R506Q/R679Q) (can be cleaved only at Arg506 and Arg306, respectively) were created. The cleavage rate was determined for each cleavage site in the presence of varied protein S concentrations and phospholipid compositions. In contrast to results on record, we found that protein S stimulated both APC cleavages in a phospholipid composition-dependent manner. Thus, on vesicles containing both phosphatidylserine and phosphatidylethanolamine, protein S increased the rate of Arg306 cleavage 27-fold and that of Arg506 cleavage 5-fold. Half-maximal stimulation was obtained at approximately 30 nm protein S for both cleavages. In conclusion, we demonstrate that APC-mediated cleavages at both Arg306 and Arg506 in FVa are stimulated by protein S in a phospholipid composition-dependent manner. These results provide new insights into the mechanism of APC cofactor activity of protein S and the importance of phospholipid composition.  相似文献   

6.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

7.
Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.  相似文献   

8.
The kinetics of the activation of human prothrombin catalyzed by human prothrombinase was studied using the fluorescent alpha-thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide (DAPA). Prothrombinase proteolytically activates prothrombin to alpha-thrombin by cleavages at Arg273-Thr274 (bond A) and Arg322-Ile323 (bond B). The differential fluorescence properties of DAPA complexed with the intermediates and products of human prothrombin activation were exploited to study the kinetics of the individual bond cleavages in the zymogen. When the catalyst was composed of prothrombinase (human factor Xa, human factor Va, synthetic phospholipid vesicles, and calcium ion), initial velocity studies of alpha-thrombin formation indicated that the kinetic constants for the cleavage of bonds A or B were similar to the constants that were obtained for the overall reaction (bonds A + B). The progress of the reaction was also monitored by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results indicated that the activation of human prothrombin catalyzed by prothrombinase proceeded exclusively via the formation of meizothrombin (bond B-cleaved) as an intermediate. Kinetic studies of the cofactor dependence of the rates of cleavage of the individual bonds indicated that, in the absence of the cofactor, cleavage at bond B would constitute the rate-limiting step in prothrombin activation. Progress curves for prothrombin activation catalyzed by prothrombinase and monitored using the fluorophore DAPA were typified by the appearance of a transient maximum, indicating the formation of meizothrombin as an intermediate. When factor Xa alone was the catalyst, progress curves were characterized by an initial burst phase, suggesting the rapid production of prethrombin 2 (bond A-cleaved) followed by its slow conversion to alpha-thrombin. Gel electrophoresis followed by autoradiography was used to confirm these results. Collectively, the results indicate that the activation of human prothrombin via the formation of meizothrombin as an intermediate is a consequence of the association of the cofactor, human factor Va, with the enzyme, human factor Xa, on the phospholipid surface.  相似文献   

9.
The inactivation of factor Va is a complex process which includes bond cleavage (at three sites) and dissociation of the A2N.A2C peptides, with intermediate activity in each species. Quantitation of the functional consequences of each step in the reaction has allowed for understanding of the presentation of disease in individuals possessing the factor V polymorphism factor VLEIDEN. APC cleavage of membrane-bound bovine factor Va (Arg306, Arg505, Arg662) leads to the dissociation of fragments of the A2 domain, residues 307-713 (A2N.A2C + A2C-peptide), leaving behind the membrane-bound A1.LC species. Evaluation of the dissociation process by light scattering yields invariant mass loss estimates as a function of APC concentration. The rate constant for A2 fragment dissociation varies with [APC], reaching a maximal value of k = 0.028 s-1, the unimolecular rate constant for A2 domain fragment dissociation. The APC binding site resides in the factor Va light chain (LC) (Kd = 7 nM), suggesting that the membrane-bound LC.A1 product would act to sequester APC. This inhibitory interaction (LC.A1.APC) is demonstrated to exist with either purified factor Va LC or the products of factor Va inactivation. Utilizing these experimental data and the reported rates of bond cleavage, binding constants, and product activity values for factor Va partial inactivation products, a model is developed which describes factor Va inactivation and accounts for the defect in factor VLEIDEN. The model accurately predicts the rates of inactivation of factor Va and factor VaLEIDEN, and the effect of product inhibition. Modeled reaction progress diagrams and activity profiles (from either factor Va or factor VaLEIDEN) are coincident with experimentally derived data, providing a mechanistic and kinetic explanation for all steps in the inactivation of normal factor Va and the pathology associated with factor VLEIDEN.  相似文献   

10.
Rate constants for human factor Va inactivation by activated human protein C (APC) were determined in the absence and presence of Ca2+ ions, protein S and varying concentrations of phospholipid vesicles of different lipid composition. APC-catalyzed factor Va inactivation in free solution (in the presence of 2 mM Ca2+) was studied under first-order reaction conditions with respect to both APC and factor Va and was characterized by an apparent second-order rate constant of 6.1 x 10(5) M-1 s-1. Stimulation of APC-catalyzed factor Va inactivation by phospholipids was dependent on the concentration and composition of the phospholipid vesicles. Optimal acceleration (230-fold) of factor Va inactivation was observed with 10 microM phospholipid vesicles composed of 20 mol% dioleoylglycerophosphoserine (Ole2GroPSer) and 80 mol% dioleoylglycerophosphocholine (Ole2GroPCho). At higher vesicle concentrations and at higher molar fractions of Ole2GroPSer some inhibition of APC-catalyzed factor Va inactivation was observed. Membranes that contained anionic phospholipids other than phosphatidylserine also promoted factor Va inactivation. The ability of different anionic lipids to enhance factor Va inactivation increased in the order phosphatidylethanolamine less than oleic acid less than phosphatidic acid less than phosphatidylglycerol less than phosphatidylmethanol less than phosphatidylserine. APC-catalyzed factor Va inactivation in the presence of phospholipid vesicles could be saturated with respect to factor Va and the reaction obeyed Michaelis-Menten kinetics. Both the Km for factor Va and the Vmax of factor Va inactivation were a function of the phospholipid concentration. The Km increased from 1 nM at 2.5 microM phospholipid (Ole2GroPSer/Ole2GroPCho 20:80, mol/mol) to 65 nM at 250 microM phospholipid. The Vmax increased from 20 mol factor Va inactivated.min-1.mol APC-1 at 2.5 microM phospholipid to 62 mol factor Va inactivated.min-1.mol APC-1 at 10 microM phospholipid and remained constant at higher phospholipid concentrations. Protein S appeared to be a rather poor stimulator of APC-catalyzed factor Va inactivation. Protein-S-dependent rate enhancements were only observed in reaction mixtures that contained negatively charged phospholipid vesicles. Independent of the concentration and the lipid composition of the vesicles, protein S caused a twofold stimulation of APC-catalyzed factor Va inactivation. This suggests that, in the human system, enhancement of APC binding to phospholipid vesicles by protein S is of minor importance. Considering that protein S is a physiologically essential antithrombotic agent, it is likely that other factors or phenomena contribute to the in vivo antithrombotic action of protein S.  相似文献   

11.
The factor Va (FVa) inactivation by activated protein C (APC), mediated by cleavages at Arg306 and Arg506 in FVa, is inhibited by both factor Xa (FXa) and prothrombin. Although FXa is known to specifically inhibit the Arg506 cleavage, the effect of prothrombin has not been confined to one cleavage site. We used recombinant FV variants, FV:R506Q/R679Q and FV:R306Q/R679Q, to investigate the effect of prothrombin on the individual cleavage sites. The APC-mediated FVa inhibition was monitored by a prothrombinase-based FVa assay, and apparent first order rate constants were calculated for each of the cleavage sites both in the presence and absence of prothrombin. Prothrombin impaired cleavages at both Arg306 and Arg506 and the inhibition correlated with a delayed appearance of proteolytic products on Western blots. Almost complete inhibition was obtained at around 3 microm prothrombin, whereas half-maximal inhibition was obtained at 0.7 microm prothrombin. After cleavage of prothrombin by thrombin, the inhibitory activity was lost. The inhibitory effect of prothrombin on APC-mediated inhibition of FVa was seen both in the presence and absence of protein S, but in particular for the Arg306 sites, it was more pronounced in the presence of protein S. Thus, prothrombin inhibition of APC inactivation of FVa appears to be due to both impaired APC function and decreased APC cofactor function of protein S. In conclusion, FVa, being part of the prothrombinase complex, is protected from APC by both FXa and prothrombin. Release of products of prothrombin activation from the prothrombinase complex would alleviate the protection, allowing APC-mediated inactivation of FVa.  相似文献   

12.
Interaction of prothrombin with factor Va-phospholipid complexes   总被引:1,自引:0,他引:1  
The effects of factor Va and the phospholipid-binding fragment of factor Va [factor Va light chain (LC), Mr 80000] on the binding of prothrombin, factor X, and factor Xa to phospholipid vesicles are reported. Equilibrium binding experiments were performed that utilized large-volume vesicles, which can be removed from the bulk solution by centrifugation. Factor Va decreased the dissociation constant of the prothrombin-phospholipid complex 50-fold, from 2.0 X 10(-7) M to 4.0 X 10(-9) M. For the factor X-phospholipid complex the decrease was 60-fold (1.8 X 10(-7) M to 3.0 X 10(-9) M) and for factor Xa, 160-fold (1.6 X 10(-7) M to 1.0 X 10(-9) M). The ratios of moles of protein bound to moles of total added factor Va at saturation of phospholipid-bound factor Va indicate an 1:1 stoichiometric complex of either factor Xa, factor X, or prothrombin and phospholipid-bound factor Va. In the presence of factor Va LC, the dissociation constants of factor Xa- and prothrombin-phospholipid complexes were increased, while the maximal protein-binding capacities of the vesicles were not affected by factor Va LC. The data suggest a competitive interaction between factor Xa and factor Va LC binding as well as between prothrombin and factor Va LC binding at the phospholipid surface. From this, it is concluded that the phospholipid-binding fragment of factor Va alone does not serve as the binding site for interactions of factor Xa and prothrombin with factor Va.  相似文献   

13.
Kalafatis M  Beck DO 《Biochemistry》2002,41(42):12715-12728
We have recently shown that amino acid region 307-348 of factor Va heavy chain (42 amino acids, N42R) is critical for cofactor activity and may contain a binding site for factor Xa and/or prothrombin [(2001) J. Biol. Chem. 276, 18614-18623]. To ascertain the importance of this region for factor Va cofactor activity, we have synthesized eight overlapping peptides (10 amino acid each) spanning amino acid region 307-351 of the heavy chain of factor Va and tested them for inhibition of prothrombinase activity. The peptides were also tested for the inhibition of the binding of factor Va to membrane-bound active site fluorescent labeled Glu-Gly-Arg human factor Xa ([OG488]-EGR-hXa). Factor Va binds specifically to membrane-bound [OG488]-EGR-hXa (10nM) with half-maximum saturation reached at approximately 6 nM. N42R was also found to interact with [OG488]-EGR-hXa with half-maximal saturation observed at approximately 230 nM peptide. N42R was found to inhibit prothrombinase activity with an IC50 of approximately 250 nM. A nonapeptide containing amino acid region 323-331 of factor Va (AP4') was found to be a potent inhibitor of prothrombinase. Kinetic analyses revealed that AP4' is a noncompetitive inhibitor of prothrombinase with respect to prothrombin, with a K(i) of 5.7 microM. Thus, the peptide interferes with the factor Va-factor Xa interaction. Displacement experiments revealed that the nonapeptide inhibits the direct interaction of factor Va with [OG488]-EGR-hXa (IC50 approximately 7.5 microM). The nonapeptide was also found to bind directly to [OG488]-EGR-hXa and to increase the catalytic efficiency of factor Xa toward prothrombin in the absence of factor Va. In contrast, a peptadecapeptide from N42R encompassing amino acid region 337-351 of factor Va (P15H) had no effect on either prothrombinase activity or the ability of the cofactor to interact with [OG488]-EGR-hXa. Our data demonstrate that amino acid sequence 323-331 of factor Va heavy chain contains a binding site for factor Xa.  相似文献   

14.
Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.  相似文献   

15.
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ~4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ~40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.  相似文献   

16.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

17.
To investigate the relationship between the individual thrombin cleavages in factor V (FV) and the generation of activated factor X (FXa) cofactor activity, recombinant FV mutants having the cleavage sites eliminated separately or in combination were used. After thrombin incubation, the ability of the FV variants to bind FXa and support prothrombin activation was tested. The interaction between FVa and FXa on the surface of phospholipid was investigated with a direct binding assay as well as in a functional prothrombin activation assay. FV mutated at all cleavage sites functioned poorly as FXa cofactor in prothrombin activation, the apparent K(d) for FXa being approximately 10 nm. Fully activated wild type FVa, yielded an apparent K(d) of around 0.2 nm. The Arg(709) and Arg(1018) cleavages occurred at low thrombin concentrations and decreased the K(d) for FXa binding 5- and 3-fold, respectively. The Arg(1545) cleavage, being less sensitive to thrombin, decreased the K(d) for FXa binding approximately 20-fold. The K(m) for prothrombin was the same for all FV variants, demonstrating B-domain dissociation to result in exposure of binding site for FXa but not for prothrombin. In conclusion, we demonstrate FV activation to be associated with the stepwise release of the B-domain, which results in a gradual exposure of the FXa-binding site.  相似文献   

18.
Protein S enhances the rate of Factor Va inactivation by activated Protein C (Walker, F. J. (1980) J. Biol. Chem. 255, 5521-5524). The activity of protein S is saturable, appearing to interact stoichiometrically with activated Protein C. Diisopropylphosphate-modified activated Protein C reversed the effect of Protein S, further indicating that a Protein S-activated Protein C interaction is required for expression of the activity of Protein S. In the absence of phospholipid, Protein S had no effect on the rate of activated Protein C-catalyzed inactivation of Factor Va. The activity of Protein S was only expressed in the presence of phospholipid vesicles, where it appeared to increase the affinity of the inactivation system for phospholipid. Protein S had no effect upon the rate of Factor Va inactivation in the presence of saturating levels of phospholipid vesicles. The effects of Protein S on the kinetics of Factor Va inactivation corresponded with its effect on the interaction between activated Protein C and phospholipid vesicles, measured by light scattering. In the presence of Protein S, the binding of activated Protein C to phospholipid vesicles was enhanced. Protein S had no effect upon the binding on the zymogen (Protein C to phospholipid vesicles). In conclusion, the stimulatory effect of Protein S on the inactivation of Factor Va by activated Protein C can be attributed, in part, to the enhancement of the binding of activated Protein C to phospholipid vesicles.  相似文献   

19.
The activation of bovine protein C by factor Xa   总被引:2,自引:0,他引:2  
A complex composed of factor Xa and phospholipid vesicles assembled in the presence of calcium ions catalyzes a discrete cleavage of the heavy chain of bovine protein C that is indistinguishable from that produced by thrombin as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cleavage generates an active site capable of hydrolyzing small substrates and inactivating factor Va function in the prothrombinase complex. Activation of protein C by factor Xa requires both calcium ions and phospholipid vesicles and proceeds at a rate an order of magnitude greater than that observed for alpha-thrombin in solution. gamma-Carboxyglutamic acid-domainless protein C is not activated by factor Xa, consistent with the requirement for phospholipid and distinguishing this reaction from protein C activation by thrombin. Thrombomodulin serves as a cofactor for the factor Xa-catalyzed reaction, forming a 1:1 complex with factor Xa (apparent Kd = 5.7 X 10(-10) M) and stimulating the saturated rate of protein C activation by factor Xa (kcat = 149 min-1) to levels comparable with the thrombin-thrombomodulin complex. Protein C activation by factor Xa is not inhibited by the specific thrombin inhibitor dansyl-N-(3-ethyl-1,5-pentanediyl)amide but is inhibited by antithrombin III, tripeptide-chloromethyl ketones, and the monoclonal antibody alpha-BFX-2b that is highly specific for factor Xa. These data indicate that thrombomodulin is promiscuous in its role as a cofactor and suggest the existence of an alternative pathway for protein C activation in vivo.  相似文献   

20.
Equilibrium binding studies of prothrombinase complex formation were undertaken using phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine (PCPS), factor Va, and factor Xa modified with dansyl glutamylglycinylarginyl chloromethyl ketone (DEGR.Xa). The interaction between the Va.PCPS and DEGR.Xa.PCPS binary complexes was experimentally isolated using saturating concentrations of PCPS. Fluorescence titrations indicated that the membrane-bound proteins interact tightly (Kd approximately 10(-9) M) with a stoichiometry of 1 mol of Va bound/mol of DEGR.Xa at saturation. Complex formation was also investigated by kinetic studies of prothrombin activation using unmodified factor Xa. The kinetic studies yielded a Kd approximately 10(-9) M, which was independent of the concentration of prothrombin in the range of 0.5-5.0 microM. Fluorescence studies of complex assembly at limiting PCPS concentrations provided evidence for an altered DEGR.Xa-PCPS interaction when the enzyme was assembled into the complex. The data suggest that although both proteins are associated with PCPS when complexed with each other, the presence of factor Va on the membrane surface increases the affinity for the Xa-PCPS interaction by an estimated 100-fold. Prothrombinase complex assembly therefore proceeds independently of the availability of substrate and is stabilized by protein-protein and protein-phospholipid interactions. Linkage between the two protein-membrane combination events leads to the further stabilization of the complex on the vesicle surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号