首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The prevalence of Achilles tendon (AT) injury is high in various sports, and AT rupture patients have been reported to have a 200-fold risk of sustaining a contralateral rupture. Tendon adaptation to different exercise modes is not fully understood. The present study investigated the structural properties of the AT in male elite athletes that subject their AT to different exercise modes as well as in Achilles rupture patients. Magnetic resonance imaging of the foot and leg, anthropometric measurements, and maximal isometric plantar flexion force were obtained in 6 male AT rupture patients and 25 male elite athletes (kayak/control group n = 9, volleyball n = 8 and endurance running n = 8). AT cross-sectional area (CSA) was normalized to body mass. Runners had a larger normalized AT CSA along the entire length of the tendon compared with the control group (P < 0.05). The volleyball subjects had a larger normalized CSA compared with the control group (P < 0.05) in the area of thinnest tendon CSA. No structural differences of the AT were found in the rupture subjects compared with the control group. Rupture subjects did not subject their AT to greater force or stress during a maximal voluntary isometric plantar flexion than the other groups. The CSA of the triceps surae musculature was the strongest predictor of AT CSA (r(s) = 0.569, P < 0.001). This study is the first to show larger CSA in tendons that are subjected to intermittent high loads. AT rupture patients did not display differences in structural or loading properties of the tendons.  相似文献   

2.
Achilles tendon xanthomas are associated with increased cardiovascular risk in patients with familial hypercholesterolemia (FH). Oxidized low density lipoprotein (OxLDL), the antibodies against OxLDL, and the LDL-associated phospholipase A(2) (Lp-PLA(2)) may play important roles in atherogenesis. We investigated the possible association between plasma levels of OxLDL, Lp-PLA(2) activity, and autoantibody titers against various types of mildly OxLDL with Achilles tendon thickness (ATT). ATT was determined by sonography in 80 unrelated heterozygous FH patients. Three different types of mildly OxLDL were prepared: OxLDL(L), OxLDL(P), and OxLDL(D), at the end of the lag, propagation, and decomposition phases of oxidation, respectively. Similar types of OxLDL were also prepared after inactivation of the LDL-associated Lp-PLA(2). These types were denoted OxLDL(-)(L), OxLDL(-)(P), and OxLDL(-)(D). FH patients exhibited significantly higher plasma OxLDL levels and serum IgG titers against OxLDL(P) and OxLDL(D) compared with 40 normolipidemic apparently healthy controls. ATT values were positively correlated with autoantibody titers against OxLDL(P) and OxLDL(D); however, in multiple regression analysis, ATT was independently associated only with the autoantibody titers against OxLDL(D). We conclude that the IgG autoantibody titers against OxLDL(D) but not OxLDL or Lp-PLA(2) may play an important role in the pathogenesis of Achilles tendon xanthomas in FH patients.  相似文献   

3.
Whether the cross-sectional area (CSA) and mechanical properties of the human Achilles tendon change in response to habitual exercise remains largely unexplored. The present study evaluated the CSA and contraction-induced displacement of the aponeurosis-tendon complex of the triceps surae in 11 untrained subjects before (tests 1 and 2) and after (test 3) approximately 9 mo of regular running ( approximately 78 training sessions). Displacement of the tendon-aponeurosis complex obtained by ultrasonography; electromyography of the gastrocnemius, soleus, and dorsiflexor muscles; and joint angular rotation were recorded during graded isometric plantarflexion ramps. Tendon CSA and moment arm were measured by using MRI, and tendon force was calculated from joint moments and tendon moment arm. A treadmill test was used to determine submaximal oxygen consumption (Vo2) at a given speed and maximal Vo2. The total running duration was approximately 43 h, distributed over 34 wk. Maximal Vo2 increased 8.6% (P < 0.01), and submaximal Vo2 decreased 6.2% (P < 0.05). Tendon-aponeurosis displacement during maximal voluntary contraction was unchanged (tests 1-3, 5.2 +/- 0.6, 5.2 +/- 0.5, and 5.3 +/- 0.4 mm, respectively) and yielded a structural stiffness of 365 +/- 50, 358 +/- 40, and 384 +/- 52 N/mm for tests 1-3, respectively (P > 0.05). Tendon CSA also remained unchanged (tests 1-3, 34.2 +/- 2.2, 33.9 +/- 2.2, and 33.8 +/- 2.1 mm2, respectively). In conclusion, a total training stimulus of approximately 9 mo of running in previously untrained subjects was adequate to induce significant cardiovascular improvements, although it did not result in any changes in the mechanical properties of the triceps surea tendon-aponeurosis complex or in the dimensions of Achilles tendon.  相似文献   

4.
The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47%), and the other leg at high tendon strain magnitude (4.72±1.08%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon–aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon–aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.  相似文献   

5.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

6.
7.
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.  相似文献   

8.
Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle–tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion.  相似文献   

9.
Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H-reflex facilitation.  相似文献   

10.
Compared with muscle or bone, there is a lack of information about the relationship between tendon adaptation and the applied loading characteristic. The purpose of the present study was to analyze the effect of different exercise modes characterized by very distinct loading patterns on the mechanical, morphological, and biochemical properties of the Achilles tendon. Sixty-four female Sprague-Dawley rats were divided into five groups: nonactive age-matched control (AMC; n = 20), voluntary wheel running (RT; n = 20), vibration strength-trained (LVST; n = 12), high-vibration strength-trained (HVST; n = 6), and high strength-trained (HST; n = 6) group. After a 12-wk-long experimental period, the Achilles tendon was tested mechanically and the cross-sectional area, the soleus and gastrocnemius muscle mass, and mRNA concentration of collagen I, collagen III, tissue inhibitor of metalloproteinase-1 (TIMP-1), transforming growth factor-beta, connective tissue growth factor, and matrix metalloproteinase-2 was determined. Neither in the LVST nor in the HVST group could any adaptation of the Achilles tendon be detected, although the training had an effect on the gastrocnemius muscle mass in the LVST group (P < 0.05). In the HST group, the highest creep was found, but the effect was more pronounced compared with the LVST group (P < 0.05) than with the AMC group. That indicates that this was rather induced by the low muscle mass rather than by training. However, the RT group had a higher TIMP-1 mRNA concentration in the Achilles tendon in contrast to AMC group (P < 0.05), which suggests that this exercise mode may have an influence on tendon adaptation.  相似文献   

11.
The Achilles tendon (AT) moment arm is an important determinant of ankle moment and power generation during locomotion. Load and depth-dependent variations in the AT moment arm are generally not considered, but may be relevant given the complex triceps surae architecture. We coupled motion analysis and ultrasound imaging to characterize AT moment arms during walking in 10 subjects. Muscle loading during push-off amplified the AT moment arm by 10% relative to heel strike. AT moment arms also varied by 14% over the tendon thickness. In walking, AT moment arms are not strictly dependent on kinematics, but exhibit important load and spatial dependencies.  相似文献   

12.
The mechanical properties of the resting, whole semitendinosus muscle of the frog have been characterized as functions of both muscle length and temperature. Measurements were made of pseudorandom white noise (PRWN) displacements (less than 10 A/half-sarcomere) applied to the muscle and the force responses to these movements. Signal correlation techniques were then used to obtain the dynamic modulus function for the muscle in the frequency range 2.44-320 Hz. This function was represented by a series combination of a Voigt element and a time delay element for tension propagation along the muscle. A dynamic elastic modulus (E), coefficient of damping (B), and tension transmission velocity (V) were measured for resting muscle on the basis of this model. For each of these parameters, a marked variation with sarcomere length (s) was found. The mean values for E and B at LO (s=2.25 mum) were 1.84+/-0.24 X 10(5) N/m2 and 2.33+/-0.25 X 10(2) Ns/m2, respectively. Further, B demonstrated a negative temperature dependence, Q10=0.78 (P less than 0.05), in the range s=2.6-3.0 mum, while E was not significantly temperature dependent. The length-dependent variations of E and B are interpreted as deriving from both passive muscle elements and attached crossbridges. Velocity was calculated at a single displacing frequency for every experiment; the mean value at LO and all temperatures was v=11.7+/-0.6 m/s. Velocity was also calculated as a function of frequency within several experiments: the results indicate considerable variation of v with frequency.  相似文献   

13.
The purpose of this technical report is to describe a cost-effective and highly reliable methodology to measure mechanical and material properties of the Achilles tendon. Subjects are positioned on an isokinetic dynamometer time synchronized to a diagnostic ultrasound device. A tendon fascicle distal to the soleus is visualized during a ramped isometric maximal plantarflexion contraction. Excursion of the fascicle and tendon torque output yield a force-elongation curve in which mechanical characteristics and material properties are derived. Excellent intrasession and intersession reliabilities were observed for both the dynamometer (intraclass correlation coefficient [ICC] 0.99, 0.95) and excursion (ICC 0.99, 0.93) measures. Practical applications for this methodology include examination of training regimes for optimal tendon adaptation and rehabilitation in the presence of tendinopathy.  相似文献   

14.
Owing to a complex morphological investigation of the human Achilles tendon, it was possible to distinguish four levels of the structural-functional organization of its fibrous elements and to reveal some regularities of their structure that recur at all the levels. Thus, collagenous molecules, microfibrillae, fibrillae and fibers have a wavy-spiral conformation. This spatial form is stabilized by a complex or a system of transversal connections corresponding to the given level of the organization. In order to maintain integrity (the structural-functional unity) of each level, certain substances of polysaccharide nature take part. Along the course of the long tendinous axis, a re-distribution (branching) of the fibrillar elements is observed at all the levels of the structural-functional organization.  相似文献   

15.
16.
Sense organs that monitor forces in legs can contribute to activation of muscles as synergist groups. Previous studies in cockroaches and stick insects showed that campaniform sensilla, receptors that encode forces via exoskeletal strains, enhance muscle synergies in substrate grip. However synergist activation was mediated by different groups of receptors in cockroaches (trochanteral sensilla) and stick insects (femoral sensilla). The factors underlying the differential effects are unclear as the responses of femoral campaniform sensilla have not previously been characterized. The present study characterized the structure and response properties (via extracellular recording) of the femoral sensilla in both insects. The cockroach trochantero-femoral (TrF) joint is mobile and the joint membrane acts as an elastic antagonist to the reductor muscle. Cockroach femoral campaniform sensilla show weak discharges to forces in the coxo-trochanteral (CTr) joint plane (in which forces are generated by coxal muscles) but instead encode forces directed posteriorly (TrF joint plane). In stick insects, the TrF joint is fused and femoral campaniform sensilla discharge both to forces directed posteriorly and forces in the CTr joint plane. These findings support the idea that receptors that enhance synergies encode forces in the plane of action of leg muscles used in support and propulsion.  相似文献   

17.
The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig. A stereoscopic microscope equipped with a digital camera recorded elongation. The fascicles were preconditioned five cycles before the failure test based on pilot data on rat tendon fascicle. Human fascicle length increased with repeated cycles (P < 0.05); cycle 5 differed from cycle 1 (P < 0.05), but not cycles 2-4. Peak stress and yield stress were greater for anterior (76.0 +/- 9.5 and 56.6 +/- 10.4 MPa, respectively) than posterior fascicles (38.5 +/- 3.9 and 31.6 +/- 2.9 MPa, respectively), P < 0.05, while yield strain was similar (anterior 6.8 +/- 1.0%, posterior 8.7 +/- 1.4%). Tangent modulus was greater for the anterior (1,231 +/- 188 MPa) than the posterior (583 +/- 122 MPa) fascicles, P < 0.05. In conclusion, tendon fascicles from the anterior portion of the human patellar tendon in young men displayed considerably greater peak and yield stress and tangent modulus compared with the posterior portion of the tendon, indicating region-specific material properties.  相似文献   

18.
19.
Human acellular dermal matrices (ADMs) are used successfully in a variety of procedures, including sports medicine related, wound repair, and breast reconstructions, but the mechanism of repair is still not fully understood. An opportunity to explore this mechanism presented itself when a patient experienced a rerupture of the native tendon due to a fall that occurred 2 months after undergoing an Achilles tendon repair using Matracell treated ADM. The ADM was removed and an extensive histology analysis was performed on the tissue. Additionally, a literature review was conducted to determine the mechanism of ADM integration into the tendon structure and explore if differences in this mechanism exist for different types of human ADMS. The histology analysis demonstrated that the healing process during a tendon reconstruction procedure is similar to that of wound healing. Furthermore, the literature review showed that differences exist in the mechanism for integration among various human ADMs and that these differences may be due to variances in the methods and technologies that manufactures use to process human ADMs.  相似文献   

20.
Quadriceps tendon with a patellar bone block may be a viable alternative to Achilles tendon for anterior cruciate ligament reconstruction (ACL-R) if it is, at a minimum, a biomechanically equivalent graft. The objective of this study was to directly compare the biomechanical properties of quadriceps tendon and Achilles tendon allografts. Quadriceps and Achilles tendon pairs from nine research-consented donors were tested. All specimens were processed to reduce bioburden and terminally sterilized by gamma irradiation. Specimens were subjected to a three phase uniaxial tension test performed in a custom environmental chamber to maintain the specimens at a physiologic temperature (37 ± 2 °C) and misted with a 0.9 % NaCl solution. There were no statistical differences in seven of eight structural and mechanical between the two tendon types. Quadriceps tendons exhibited a significantly higher displacement at maximum load and significantly lower stiffness than Achilles tendons. The results of this study indicated a biomechanical equivalence of aseptically processed, terminally sterilized quadriceps tendon grafts with bone block to Achilles tendon grafts with bone block. The significantly higher displacement at maximum load, and lower stiffness observed for quadriceps tendons may be related to the failure mode. Achilles tendons had a higher bone avulsion rate than quadriceps tendons (86 % compared to 12 %, respectively). This was likely due to observed differences in bone block density between the two tendon types. This research supports the use of quadriceps tendon allografts in lieu of Achilles tendon allografts for ACL-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号