首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations.  相似文献   

2.
A Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides.  相似文献   

3.

Background

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Methodology/Findings

Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1.

Conclusions/Significance

A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology.  相似文献   

4.
Adoptive transfer of virus-specific memory lymphocytes can be used to identify factors and mechanisms involved in the clearance of persistent virus infections. To analyze the role of B cells in clearing persistent infection with lymphocytic choriomeningitis virus (LCMV), we used B-cell-deficient μMT/μMT (B−/−) mice. B−/− mice controlled an acute LCMV infection with the same kinetics and efficiency as B-cell-competent (B+/+) mice via virus-specific, major histocompatibility complex (MHC) class I-restricted CD8+ cytotoxic T lymphocytes (CTL). CTL from B−/− and B+/+ mice were equivalent in affinity to known LCMV CTL epitopes and had similar CTL precursor frequencies (pCTL). Adoptive transfer of memory cells from B+/+ mice led to virus clearance from persistently infected B+/+ recipients even after in vitro depletion of B cells, indicating that B cells or immunoglobulins are not required in the transfer population. In contrast, transfer of memory splenocytes from B−/− mice failed to clear virus. Control of virus was restored neither by transferring higher numbers of pCTL nor by supplementing B−/− memory splenocytes with LCMV-immune B cells or immune sera. Instead, B−/− mice were found to have a profound CD4 helper defect. Furthermore, compared to cultured splenocytes from B+/+ mice, those from B−/− mice secreted less gamma interferon (IFN-γ) and interleukin 2, with differences most pronounced for CD8 T cells. While emphasizing the importance of CD4 T-cell help and IFN-γ in the control of persistent infections, the CD4 T-helper and CD8 T-cell defects in B−/− mice suggest that B cells contribute to the induction of competent T effector cells.Cytotoxic T lymphocytes (CTL) have in general been associated with the resolution of both acute and chronic viral infections. As first shown by studies of lymphocytic choriomeningitis virus (LCMV) in mice, its natural host, a critical component of immune responses to virus infection is the induction of virus-specific major histocompatibility complex (MHC) class I-restricted CTL (reviewed in reference 14). Evidence that these cells can curtail acute viral infections and clear virus and viral genetic material from sera, peripheral blood leukocytes, and infected tissues came from adoptive transfer of LCMV memory CTL into mice persistently infected with LCMV (1, 25, 33, 47, 53).Studies with humans have correlated the presence of CTL with the control of acute infection and clearance of virus and the absence of CTL activity with persistent viral infections. Hence, humans with genetic deficiencies in the humoral compartment of the immune system but with an intact T-cell compartment overcome most viral infections and display immunological memory when challenged or reinfected with the same virus. For example, agammaglobulinemic children recover from acute measles infection as well as do fully immunocompetent individuals and resist reinfection (23). In contrast, individuals with genetic or acquired defects in the T-cell compartment generally cannot control viral infections. Similarly, activity of CTL specific for hepatitis B virus (HBV) is associated with control of acute HBV infection; in the absence of CTL, HBV persists (39). Additionally, anti-HIV CTL dramatically decrease the load of human immunodeficiency virus (HIV) in infected patients, whereas loss of CTL function is accompanied by regress from a relatively healthy clinical stage to AIDS or rapid development of disease after HIV infection (9, 32). Finally, diminished or missing CTL responses to human cytomegalovirus (HCMV) facilitate HCMV disease in individuals undergoing bone marrow transplantation (40). Adoptive transfer of HCMV MHC-restricted CTL into such patients prevented CMV viremia or CMV disease (55). Thus, understanding the requirements for initiation and maintenance of CTL activity is essential.Earlier, we and others documented the requirement for CD4 T-cell help (5, 16, 29, 48) and gamma interferon (IFN-γ) (48) in maintaining sufficient CTL activity in vivo and resolution of a chronic LCMV infection. Here, we evaluate the role of B lymphocytes in this process. Under the appropriate signals, B lymphocytes can differentiate into plasma cells to function as antibody-secreting cells. Trapping of antibody-antigen complexes as well as processing of antigen and peptide presentation within the MHC complex allows B cells to also function as antigen-presenting cells (APC) to T cells (22). Furthermore, B cells release numerous growth factors and cytokines that regulate immune responses (44).To ascertain the role of B lymphocytes in the clearance of both acute and persistent LCMV infections, we used μMT/μMT B-cell-deficient (B−/−) mice which lack functional B cells and antibody. Earlier studies showed that CD8 T cells from these mice were capable of controlling an acute LCMV infection and that there was no defect in generating CTL precursors (3). Our results confirm and expand these findings. We demonstrate that while adoptive transfer of memory cells from B+/+ mice easily clears infectious virus and viral material in an MHC-matched persistently infected recipient, transfer of similar cells from B−/− mice does not. However, failure to terminate the persistent infection does not result from absence of B cells in the transfer population. Apparently, B−/− mice have a fundamental defect in CD4 helper function as well as a quantitative deficiency in IFN-γ and interleukin 2 (IL-2) preferentially produced by CD8 T cells after LCMV infection. These results emphasize the essential role for CD4 T-lymphocyte help and IFN-γ in achieving CTL activity necessary for clearing a persistent LCMV infection and point to an expanded role for B cells in the development and maintenance of CD4 and CD8 T-cell functions.  相似文献   

5.

Background

We previously showed that newborns congenitally infected with Trypanosoma cruzi (M+B+) display a strong type 1 parasite-specific T cell immune response, whereas uninfected newborns from T. cruzi-infected mothers (M+B−) are prone to produce higher levels of proinflammatory cytokines than control neonates (M−B−). The purpose of the present study was to determine if such fetal/neonatal immunological environments could alter the response to standard vaccines administered in early life.

Methodology

Infants (6–7 months old) living in Bolivia, an area highly endemic for T. cruzi infection, and having received Bacillus Calmette Guerin (BCG), hepatitis B virus (HBV), diphtheria and tetanus vaccines, were enrolled into the M+B+, M+B−, M−B− groups mentioned above. The production of IFN-γ and IL-13, as markers of Th1 and Th2 responses respectively, by peripherical blood mononuclear cells stimulated with tuberculin purified protein derivative of Mycobacterium tuberculosis (PPD) or the vaccinal antigens HBs, diphtheria toxoid (DT) or tetanus toxoid (TT), as well as circulating levels of IgG antibodies against HBsAg, DT and TT were analyzed in infants. Cellular responses to the superantigen SEB were also monitored in M+B+, M+B−, M−B−infants and newborns.

Principal Findings

M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines than did M+B− and M−B− groups. They also displayed an enhanced antibody production to HBsAg. This was associated with a type 1-biased immune environment at birth, since cells of M+B+ newborns produced higher IFN-γ levels in response to SEB. M+B− infants produced more IFN-γ in response to PPD than the other groups. IL-13 production remained low and similar in all the three groups, whatever the subject''s ages or vaccine status.

Conclusion

These results show that: i) both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period, and ii) the overcoming of immunological immaturity by T. cruzi infection in early life is not limited to the development of parasite-specific immune responses, but also tends to favour type 1 immune responses to vaccinal antigens.  相似文献   

6.
Left-handed Z-DNA is radically different from the most common right-handed B-DNA and can be stabilized by interactions with the Zα domain, which is found in a group of proteins, such as human ADAR1 and viral E3L proteins. It is well-known that most Zα domains bind to Z-DNA in a conformation-specific manner and induce rapid B–Z transition in physiological conditions. Although many structural and biochemical studies have identified the detailed interactions between the Zα domain and Z-DNA, little is known about the molecular basis of the B–Z transition process. In this study, we successfully converted the B–Z transition-defective Zα domain, vvZαE3L, into a B–Z converter by improving B-DNA binding ability, suggesting that B-DNA binding is involved in the B–Z transition. In addition, we engineered the canonical B-DNA binding protein GH5 into a Zα-like protein having both Z-DNA binding and B–Z transition activities by introducing Z-DNA interacting residues. Crystal structures of these mutants of vvZαE3L and GH5 complexed with Z-DNA confirmed the significance of conserved Z-DNA binding interactions. Altogether, our results provide molecular insight into how Zα domains obtain unusual conformational specificity and induce the B–Z transition.  相似文献   

7.
Li X  Peng Y  Qu X 《Nucleic acids research》2006,34(13):3670-3676
Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nanodevice applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40°C by SWNTs but no change for AT-DNA. SWNTs can induce B–A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B–A transition in solution and they bind to the DNA major groove with GC preference.  相似文献   

8.
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection.  相似文献   

9.
Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.  相似文献   

10.
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at ‘Hoogsteen’ sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson–Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.  相似文献   

11.
The interactions of self-complementary oligonucleotides with a group of metal-mediated DNA-binding drugs, including chromomycin A3, mithramycin and the novel compound UK-1, were examined via electrospray ionization quadrupole ion trap mass spectrometry. Both chromomycin and mithramycin were shown to bind preferentially to GC-rich oligonucleotide duplexes in a 2:1 drug:metal ratio, while UK-1 was shown to bind in a 1:1 drug:metal stoichiometric ratio without a strong sequence preference. These trends were observed in the presence of Co2+, Ni2+ and Zn2+, with the exception that chromomycin–Zn2+ complexes were not readily observed. The binding stoichiometries as well as the sequence specificities are in agreement with literature reports for solution studies. Binding selectivities and stabilities of the complexes were also probed using electrospray ionization mass spectrometry. Both of the GC-rich oligomers 5′-GCGCGC-3′ and 5′-GCGCATGCGC-3′ exhibited a binding preference for chromomycin over mithramycin in the presence of Co2+ and Ni2+. Energy-variable collisionally activated dissociation of the complexes was employed to determine the stabilities of the complexes. The relative metal-dependent binding energies were Ni2+ > Zn2+ > Co2+ for UK-1–oligomer complexes and Ni2+ > Co2+ for both mithramycin and chromomycin complexes.  相似文献   

12.
Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer''s disease (AD) drug-oriented chemical-protein interactome (CPI) using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE), and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER) and histone deacetylase (HDAC), which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover “behind-the-scenes” aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm.  相似文献   

13.
Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas'' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.  相似文献   

14.
Multiple sclerosis (MS) is a complex trait in which allelic variation in the MHC class II region exerts the single strongest effect on genetic risk. Epidemiological data in MS provide strong evidence that environmental factors act at a population level to influence the unusual geographical distribution of this disease. Growing evidence implicates sunlight or vitamin D as a key environmental factor in aetiology. We hypothesised that this environmental candidate might interact with inherited factors and sought responsive regulatory elements in the MHC class II region. Sequence analysis localised a single MHC vitamin D response element (VDRE) to the promoter region of HLA-DRB1. Sequencing of this promoter in greater than 1,000 chromosomes from HLA-DRB1 homozygotes showed absolute conservation of this putative VDRE on HLA-DRB1*15 haplotypes. In contrast, there was striking variation among non–MS-associated haplotypes. Electrophoretic mobility shift assays showed specific recruitment of vitamin D receptor to the VDRE in the HLA-DRB1*15 promoter, confirmed by chromatin immunoprecipitation experiments using lymphoblastoid cells homozygous for HLA-DRB1*15. Transient transfection using a luciferase reporter assay showed a functional role for this VDRE. B cells transiently transfected with the HLA-DRB1*15 gene promoter showed increased expression on stimulation with 1,25-dihydroxyvitamin D3 (P = 0.002) that was lost both on deletion of the VDRE or with the homologous “VDRE” sequence found in non–MS-associated HLA-DRB1 haplotypes. Flow cytometric analysis showed a specific increase in the cell surface expression of HLA-DRB1 upon addition of vitamin D only in HLA-DRB1*15 bearing lymphoblastoid cells. This study further implicates vitamin D as a strong environmental candidate in MS by demonstrating direct functional interaction with the major locus determining genetic susceptibility. These findings support a connection between the main epidemiological and genetic features of this disease with major practical implications for studies of disease mechanism and prevention.  相似文献   

15.
A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vaccine recipients by gamma interferon enzyme-linked immunospot assay and/or limiting-dilution analysis. The same T-cell receptor Vβ CDR3 sequence that is found in FLRGRAYGL-specific T cells from most EBV-seropositive individuals could also be detected in the peripheral blood of vaccine recipients. The vaccine was well tolerated, with the main side effect being mild to moderate injection site reactions. After a 2- to 12-year follow-up, 1/2 placebo vaccinees who acquired EBV developed infectious mononucleosis, whereas 4/4 vaccinees who acquired EBV after completing peptide vaccination seroconverted asymptomatically. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly influence development of a normal repertoire of EBV-specific CD8+ T-cell responses following seroconversion.  相似文献   

16.

Background

Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and regulation of autoreactive CD8+ T cells in Multiple Sclerosis.

Methodology/Principal Findings

Immunoproteasomes and PA28-αβ regulator are present in MS affected brain area and accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons, endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262 Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2 codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111–119.

Conclusion/Significance

The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLA-A*02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of immunoproteasome in the MS pathogenesis.  相似文献   

17.

Background

Major histocompatibility complex (MHC) antigens are important for alloimmune responses as well as immune tolerance. Previous studies have shown that presentation of donor MHC antigens by donor-specific transfusion prior to or upon transplantation promotes transplant tolerance induced by other agents. However, it is unclear whether presentation of donor MHC antigens by DNA vaccination induces long-term allograft survival.

Methodology/Principal Findings

We investigated whether presentation of MHC class-II and/or class-I donor antigens by DNA vaccination suppresses alloimmune responses and promotes long-term allograft acceptance. We initially found that presentation of both MHC donor antigens by DNA vaccination itself prior to transplantation fails to significantly prolong islet allograft survival in otherwise untreated mice. However, islet allograft survival was significantly prolonged when MHC class-II DNA vaccination was accompanied with IL-2 administration (MHCII + IL-2) while MHC class-I DNA vaccination was followed by IL-2 and subsequent neutralizing anti-IL-2 treatments (MHCI + IL-2/anti-IL-2). Especially, this protocol promoted long-term allograft survival in the majority of recipients (57%) when combined with low doses of rapamycin post-transplantation. Importantly, MHCII + IL-2 induced FoxP3+ Treg cells in both spleens and grafts and suppressed graft-infiltrating CD4+ cell proliferation, whereas MHCI + IL-2/anti-IL-2 mainly inhibited graft-infiltrating CD8+ cell proliferation and donor-specific CTL activity. The combined protocol plus rapamycin treatment further reduced both CD4+ and CD8+ T cell proliferation as well as donor-specific CTL activity but spared FoxP3+ Treg cells. Depleting CD25+ Treg cells or adoptive transfer of pre-sensitized CD8+ T cells abolished this long-term allograft survival.

Conclusions/Significance

Manipulating IL-2 availability during presentation of MHC class-II and class-I donor antigens by DNA vaccination pre-transplantation induces Treg cells, suppresses alloimmune responses and promotes long-term allograft survival.  相似文献   

18.
Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients.  相似文献   

19.
A key issue in the nucleotide excision repair (NER) of bulky carcinogen–DNA adducts is the ability of the NER machinery to recognize and repair certain adducts while failing to repair others. Unrepaired adducts can survive to cause mutations that initiate the carcinogenic process. Benzo[c]phenanthrene (B[c]Ph), a representative fjord region polycyclic aromatic hydrocarbon, can be metabolically activated to the enantiomeric benzo[c]phenanthrene diol epoxides (B[c]PhDEs), (+)-(1S,2R,3R,4S)-3,4- dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phe nanthrene and the corresponding (–)-(1R,2S,3S,4R) isomer. These react predominantly with adenine residues in DNA to produce the stereoisomeric 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts. Duplexes containing the 1R (+) or 1S (–) B[c]Ph-dA adduct in codon 61 of the human N-ras mutational hotspot sequence CA*A, with B[c]Ph modification at A*, are not repaired by the human NER system. However, the analogous stereoisomeric DNA adducts of the bay region benzo[a]pyrene diol epoxide (B[a]PDE), 10S (+)- and 10R (–)-trans-anti-B[a]P-N6-dA, are repaired in the same base sequence. In order to elucidate structural and thermodynamic origins of this phenomenon, we have carried out a 2 ns molecular dynamics simulation for the 1R (+)- and 1S (–)-trans-anti-B[c]Ph-N6-dA adducts in an 11mer duplex containing the human N-ras codon 61 sequence, and compared these results with our previous study of the B[a]P-dA adducts in the same sequence. The molecular mechanics Poisson– Boltzmann surface area (MM-PBSA) method was applied to calculate the free energies of the pair of stereoisomeric B[c]Ph-dA adducts, and a detailed structural analysis was carried out. The different repair susceptibilities of the B[a]P-dA adducts and the B[c]Ph-dA adducts can be attributed to different degrees of distortion, stemming from combined effects of differences in the quality of Watson–Crick hydrogen bonding, unwinding, stretching and helix backbone perturbations. These differences are due to the different intrinsic topologies of the rigid, planar bay region adducts versus the twisted, sterically hindered fjord region adducts.  相似文献   

20.
Molecular chaperones of the 70 kDa family mediate protein–protein interactions by selectively binding to partially unfolded segments of other proteins in an ATP-dependent activity cycle. Previous investigations of chaperone substrate selectivity have shown that chaperones have a propensity to bind to partially unfolded segments of polypeptides that contain bulky hydrophobic residues. However, recent investigations have shown that 70 kDa chaperones such as DnaK, which is expressed by Escherichia coli, also bind short basic peptides and even polycations. We report here that DnaK specifically binds to the polycation protamine when [protamine]/[DnaK] is near unity, whereas protamine induces the aggregations of DnaK when [protamine]/[DnaK] ≥ 20. Complexes between DnaK and protamine were detected using fluorescently labeled protamine (protamine*) in conjunction with high performance size exclusion chromatography. We found that: (i) an unlabeled peptide of known affinity for DnaK partially inhibited the formation of DnaK-protamine* complexes; (ii) Mg-ATP (and Mg-γ-S-ATP) significantly reduced the affinity of protamine* for DnaK; and (iii) the rate of DnaK-protamine* complex dissociation is highly temperature-sensitive, with apparent activation enthalpies (ΔH*) equal to 32 ± 4 and 28 ± 1 kcal mol−1 in the absence of added nucleotide and in the presence of ADP, respectively. The results are consistent with the specific binding of protamine* at the (poly)peptide binding site of DnaK. A model is proposed to account for the protamine-induced aggregation of DnaK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号