首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the published NMR spectroscopy data, three-dimensional structures of the HIV-1 gp120 protein V3 loop were obtained by computer modeling in the viral strains HIV-Haiti and HIV-MN. In both cases, the secondary structure elements and conformations of irregular stretches were determined for the fragment representing the principal antigenic determinant of the virus, as well as determinants of the cellular tropism and syncytium formation. Notwithstanding the high variability of the amino acid sequence of gp120 protein, more than 50% of the V3 loop residues retained their conformations in the different HIV-1 virions. The combined analysis of the findings and the literature data on the biological activity of the individual residues of the HIV-1 V3 loop resulted in identification of its structurally conservative amino acids, which seem to be promising targets for antiviral drug design by protein engineering approaches.  相似文献   

2.
The V3 loop on gp120 from human immunodeficiency virus type 1 (HIV-1) is a focus of many research groups involved in anti-AIDS drug development because this region of the protein is a principal target for neutralizing antibodies and a major determinant for cell tropism and syncytium formation. In this study, the nucleotide sequences of the env gene region coding the V3 loop were determined by DNA sequencing methods for four novel HIV-1 strains that circulate in the countries of Eastern Europe, such as Russia, Belarus, Ukraine, etc. Based on the empirical data obtained, the 3D structures of the V3 loops associated with these viral modifications were generated by computer modeling and then compared to discover similarities in the spatial arrangement of this functionally important site of gp120. Despite the HIV-1 genetic variety, several regions of the V3 loop that contain residues critical for cell tropism were shown to be structurally invariant, which may explain its exceptional role in a co-receptor usage. These data together with those on the biological activity of the V3 individual residues clearly show that these conserved structural motifs of gp120 represent potential HIV-1 weak points most suitable for therapeutic intervention.  相似文献   

3.
Several porphyrin derivatives were reported to have anti-HIV-1 activity. Among them, meso-teta(4-carboxyphenyl)porphine (MYCPP) and other carboxyphenyl derivatives were the most potent inhibitors (EC50 < 0.7 μM). MTCPP bound to the HIV-1 enveloope glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to HIV-1 envelop glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to regions on gp120 which cannot be mimicked by peptides. Further characterization of the binding domain for MTCPP is important for understanding the antiviral activity of porphyrins and for the design of anit-HIV-1 drugs interfering with functions of the virus envelope. Results presented here show that: (i) deletion of the V3 loop from the gp120 sequence resulted in drastically diminished MTCPP binding, suggesting that the V3 loop is the dominant if not the only target site on gp120; (ii) this site was only partially mimicked by full-length V3 loop peptides; (iii) MTCPP binding to the gp120 V3 loop elicited allosteric effects resulting in decreased accessibility of the CD4 receptor binding site; (iv) the binding site for MTCPP lies within the central portion of the V3 loop (KSIHIGPGRAFY for the HIV-1 subtype B consensus sequence) and does not involve directly the GPG apex of the loop. These results may help in designing antiviral compounds with improved activity.  相似文献   

4.
A computer-aided search for novel anti-HIV-1 agents able to mimic the pharmacophore properties of broadly neutralizing antibody (bNAb) 3074 was carried out based on the analysis of X-ray complexes of this antibody Fab with the MN, UR29, and VI191 peptides from the V3 loop of the HIV envelope protein gp120. Using these empirical data, peptidomimetic candidates of bNAb 3074 were identified by a public, web-oriented virtual screening platform (pepMMsMIMIC) and models of these candidates bound to the above V3 peptides were generated by molecular docking. The docking calculations identified four molecules exhibiting a high affinity to all of the V3 peptides. These molecules were selected as the most probable peptidomimetics of bNAb 3074. Finally, the stability of the complexes of these molecules with the MN, UR29, and VI191 V3 peptides was estimated by molecular dynamics and free energy simulations. Specific binding to the V3 loop was accomplished primarily by π–π interactions between the aromatic rings of the peptidomimetics and the conserved Phe-20 and/or Tyr-21 of the V3 immunogenic crown. In a mechanism similar to that of bNAb 3074, these compounds were found to block the tip of the V3 loop forming its invariant structural motif that contains residues critical for cell tropism. Based on these findings, the compounds selected are considered as promising basic structures for the rational design of novel, potent, and broad-spectrum anti-HIV-1 therapeutics.  相似文献   

5.
The purpose of this study is to analyze the structure of the V3 loop of the HIV-1 gp120 molecule at the atomic level. The total energy of each member of the antibody-complexed 16-mer V3 conformer data set of Sharon et al. (PDB 1NJ0) was determined by the Hartree–Fock-self-consistent field (HF-SCF) method and with the GROMOS96 force field. There was no correlation between the results of the classical GROMOS96 force field analysis and the ab initio HF-SCF quantum mechanical analysis of the energy of the V3-loop-peptide conformers. HF-SCF optimization (AM1) of conformer geometries yielded structures in which HIS315 is displaced from its original position in the combining site of human antibody fragment 447-52D, but with the hairpin turn intact. The hairpin shape of the V3 loop remained detectable, albeit distorted, even with perturbation by a lithium dicationic electrostatic force field and by substitution of the PRO320 at the crown of the V3 hairpin by a GLY. These data suggest that the hairpin conformation is at least partially stable to long-range electrostatic perturbations, either with or without PRO in the tip of the crown of the V3-hairpin loop. Figure Molecular geometry of HIV-1 V3 conformer model 5 and a GLY320 substituted model 5. Space-filling models were obtained with ViewMol3D [Sharon et al. (2002) PDB 1NJ0]). Red=oxygen, blue=nitrogen, black=carbon, white=hydrogen and purple=lithium. End-to-end distance (D) was obtained with ViewMol3D and is in Ångströms. Geometry optimized GLY320 Model 5, D=4.74 ÅThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

6.
The G-protein coupled receptor CCR5 functions pathologically as the primary co-receptor for macrophage tropic (R5) strains of HIV-1. The interactions responsible for co-receptor activity are unknown. Molecular-dynamics simulations of the extracellular and adjacent transmembrane domains of CCR5 were performed with explicit solvation utilizing a rhodopsin-based homology model. The functional unit of co-receptor binding was constructed via docking and molecular-dynamics simulation of CCR5 and the variable 3 loop of gp120, which is a dominant determinant of co-receptor utilization. The variable 3 loop was demonstrated to interact primarily with the amino terminus and the second extracellular loop of CCR5, providing novel structural information regarding the co-receptor-binding site. Alanine mutants that alter chemokine binding and co-receptor activity were examined. Molecular-dynamics simulations with and without the variable 3 loop of gp120 were able to rationalize the activities of these mutants successfully, providing support for the proposed model. Based on these results, the global complex of CCR5, gp120 including the V3 loop and CD4, was investigated. The utilization of computational analysis, in combination with molecular biological data, provides a powerful approach for understanding the use of CCR5 as a co-receptor by HIV-1.  相似文献   

7.
V3 loop peptides from three different human immunodeficiency virus type 1 (HIV-1) strains were synthesized. BH10, ADA, and 89.6 strains whose infections are dependent on CXCR4, CCR5, and both, respectively, were selected. Co-transfection of luciferase reporter gene and corresponding envelope genes (HXB2, ADA, and 89.6) generate pseudotype viruses (HXB2/Luc, ADA/Luc, and 89.6/Luc). The effects of each peptide on the infection of U87 cells expressing CD4 and one of the coreceptors with all pseudotype viruses were evaluated. V3 loop peptide from BH10 (V3-BH10) alone increased the HXB2/Luc infection by 93% at 10 microM. Both V3-ADA and V3-89.6 enhanced ADA/Luc infection by 38% and by 55% at 10 microM, respectively. For 89.6/Luc infection, only V3-89.6 enhanced the infections on both target cells. V3-BH10 modulated the epitopes of coreceptor binding site and V2 loop of gp120 on HIV-1 IIIB infected H9 cells, indicating that V3 loop peptide activates viral gp120 and enhances infectivity.  相似文献   

8.
Andrianov  A. M. 《Molecular Biology》2002,36(4):567-574
NMR data and the previously developed theoretical method were used to determine the three-dimensional structure of the immunodominant epitope (IDE) of the HIVThailand protein gp120. The best energy IDE conformers consistent with the theoretical and experimental data were calculated, and their ensemble was shown to give rise to the main chain folds found earlier in examining the HIVMN IDE structure. The gp120 IDE is supposed to behave as a metastable oligopeptide that, depending on the microenvironment, largely assumes one of the conformations from the ensemble. The results are discussed in the light of literature data on HIV-1 IDE structure.  相似文献   

9.
In an attempt to analyze structure, function and evolution of HIV-1 GP120 V3, interactions among the Hartree–Fock energy, the conformational entropy and the Shannon entropy were determined for the 1NJ0 set of antibody-bound V3 loop conformers. The Hartree–Fock energy of each conformer was determined at the MINI level with GAMESS. The conformational entropy was determined per conformer and per residue from the mass-weighted covariance matrices. The Shannon entropy per residue was determined from sequence-substitution frequencies. Correlations were determined by linear regression analysis. There was a negative correlation between the Hartree–Fock energy and the conformational entropy (R=−0.4840, p=0.0078, df =28) that enhanced the negative Helmholtz-free-energy change for the binding of the GP120 ligand to target CD4. The Shannon entropy of V3 was a function of the conformational entropy variance (R=0.7225, p=0.00157, df=15) and of the V3 Hartree–Fock energy. Biological implications of this work are that (1) conformational entropy interacts with V3 Hartree–Fock energy to enhance GP120 binding to CD4 cell receptors and that (2) the Hartree–Fock energy of V3 interacts with the evolutionary system to participate in the regulation of V3 diversity.  相似文献   

10.
The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV strain BH10 gp120, as well as in 27 other HIV-1 strains examined. Two helical segments were predicted in regions displaying profound sequence variation, one in a region suggested to be critical for CD4 binding. The predicted content of helix, β-strand, and coil was consistent with estimates from Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design of future HIV sub-unit vaccine candidates. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The variable domain V3 in the outer glycoprotein gp 120 of HIV-1 is a highly important region with respect to immune response during the course of viral infection. Neutralizing antibodies are produced against this domain; in addition, it has been shown to be a functionally active epitope for T helper and cytotoxic T cells. The high degree of amino acid variability in individual HIV-isolates, however, limits the use of the V3-domain in approaches to vaccine development. In order to characterize the residues important for antibody interaction and binding to MHC class I proteins, we constructed a consensus sequence of the V3-domain with broad reactivity [1] and used synthetic peptides derived from this consensus with individual residues altered to alanine. These peptides were used as antigens in ELISA tests to define the amino acids which are important for binding to human and rabbit/anti-peptide immunoglobulins. In addition, we used these alanine-derived peptides in interaction studies with human HLA-A2.1 and mouse H-2Dd by testing their capacity to stabilize the respective MHC class I protein complexes on the surface of mutant cell lines T2 and RMA-S transfected with Dd gene. The experimental tests allowed us to define individual residues involved in antibody and MHC-protein interaction, respectively. In a further approach, we used those results to design interaction models with HLA-A2.1 and H-2Dd. Therefore, a structural model for H-2Dd was built that exhibits an overall similar conformation to the parental crystal structure of HLA-A2.1. The resulting interaction models show V3-peptide bound in an extended β-conformation with a bulge in its centre for both H-2Dd and HLA-A2.1 complexes. The N- and C-termini of V3 peptide reside in conserved pockets within both MHC-proteins. Anchoring residues could be determined that are crucial for the binding of the respective MHC class I haplotype. The cross-reactivity of V3-peptide in enhancing the expression of two different MHC class I molecules (H-2Dd and HLA-A2.1) is shown to be based on similar peptide binding that induces an almost identical peptide conformation.  相似文献   

12.
Specific proteolytic cleavage of the gp120 subunit of the HIV-1 envelope (Env) glycoprotein in the third variable domain (V3) has previously been reported to occur in several cell lines, including Chinese hamster ovary cells that have been used for production of Env-based HIV vaccine candidates. Here we report that this proteolytic activity on JRCSF gp120 is dependent on cell density, medium conditions, and supernatant concentration. The resulting cleaved polypeptides cannot be separated from intact gp120 by conventional or affinity chromatography under non-reducing conditions. Inhibitor studies reveal that Pefabloc and benzamidine, but not chymostatin, block gp120 cleavage in a dose-dependent fashion, suggesting the presence of a trypsin-like serine protease in CHO-K1 cells. The proteolytic activity is increased with certain types of cell culture growth media. A combination of serum-free OptiMEM media during expression and potent protease inhibitors post-expression can effectively prevent HIV gp120 degradation. The same strategy can be applied to the expression and purification of gp120 of other strains or other forms of envelope-based vaccine candidates containing V3 sequences.  相似文献   

13.
14.
We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15N labels at the nitrogen positions of arginine side chains and 13C labels at glycine carbonyl positions and 13C-detected 13C-15N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82–85], but is shown by the REDOR measurements to be absent in the RP135/0.5 complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of and backbone dihedral angles in the RP135/0.5 complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13C-15N dipole–dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141–145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331–335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.  相似文献   

15.
Preventing cell entry of human immunodeficiency virus 1 (HIV-1) is of interest for the development of innovative therapies. We previously reported a specific interaction between HIV-1 envelope glycoprotein 120 (gp120) and Tat at the cell surface, which enhances virus attachment and entry. We also identified a gp120-mimicking peptide, CT319, that competes with gp120 for Tat binding, thus inhibiting HIV-1 infection. Here we report a molecular dissection of gp120 regions involved in this mechanism. Our findings identify the V1/V2 loop of gp120 as involved in Tat binding, and define this interaction as functionally relevant for HIV-1 entry into host cells.  相似文献   

16.
We examined the relationship between the amino acid sequences of the V2 and V3 regions of the envelope protein and the biological properties of ten human immunodeficiency virus type 1 (HIV-1) primary isolates. The infectivity, cytopathic effect (CPE), and syncytium forming activity of these primary isolates were tested against three T cell lines (CEM, MT2, and MOLT4/CL.8 cells), CD8-depleted peripheral blood mononuclear cells (PBMC), and primary monocyte-derived macrophages (MDM) from seronegative donors. In addition to the viral groups which had the syncytium inducing/T-cell line tropic (SI/TT) phenotype or non-syncytium inducing/non-T cell line tropic (NSI/NT) phenotype (including the NSI/macrophage tropic (NSI/MT) phenotype), there was a group of viruses that infected one or two T cell lines and PBMC but could not mediate syncytium formation. We therefore classified this group of viruses as a non-syncytium inducing/partial T-cell line tropic (NSI/pTT) virus. To investigate the relationship between these viral phenotypes and the sequence variability of the V2 and V3 regions of the envelope, we cloned the viral gene segment and sequenced the individual isolates. The sequence data suggested that the SI/TT type changes in the V3 sequence alone mediate a partial T cell line tropism and mild cytopathic effect and that an isolate became more virulent (SI/TT phenotype) if there were additional changes in the V2 or other regions. On the other hand, sequence changes in the V2 region alone could not mediate phenotypic changes but some additional changes in the other variable regions (for example, V3) might be required for the phenotypic changes in combination with changes in V2. These findings also suggested that amino acid changes in both the V2 and V3 region are required for the development of virulent variants of HIV-1 that outgrow during advanced stages of the disease.  相似文献   

17.
Possible roles of oxidative stress and protein oxidation on alcohol-induced augmentation of cerebral neuropathy in gp120 administered alcohol preferring rats drinking either pure water (W rats) or a free-choice ethanol and water (E rats) for 90 days. This study showed that peripherally administered gp120 accumulated into the brain, liver, and RBCs samples from water drinking – gp120 administered rats (Wg rats) and ethanol drinking – gp120 administered rats (Eg rats), although gp120 levels in samples from Eg rats were significantly greater than the levels in samples from Wg rats. The brain samples from ethanol drinking-saline administered (EC) and Wg rats exhibited comparable levels of free radicals that were significantly lower than the levels in Eg rats. Peroxiredoxin-I (PrxI) activity in the brain samples exhibited the following pattern: Wg ≫ ≫ WC ≫ EC > Eg. Total protein-carbonyl and carbonylated hippocampal cholinergic neurostimulating peptide precursor protein levels, but not N -acetylaspartate or N -acetyl aspartylglutamate or total protein-thiol levels, paralleled the free radical levels in the brain of all four groups. This suggests PrxI inhibition may be more sensitive indicator of oxidative stress than measuring free radicals or metabolites. As PrxI oxidation in WC, Wg, and EC rats was reversible, while PrxI oxidation in Eg rats was not, we suggest that alcohol drinking and gp120 together hyperoxidized and inactivated PrxI that suppressed free radical neutralization in the brain of Eg rats. In conclusion, chronic alcohol drinking, by carbonylating and hyperoxidizing free radical neutralization proteins, augmented the gp120-induced oxidative stress that may be associated with an increase in severity of the brain neuropathy.  相似文献   

18.
To clarify the mechanism by which curdlan sulfate (CRDS) inhibits human immunodeficiency virus (HIV)-1 infection, we examined its influence on the binding of gp120 to CD4 molecules on T cells and macrophages, as well as on the production of TNF-α by gp120-stimulated macrophages (which promotes HIV-1 replication). CRDS treatment of cells not only inhibited the binding of HIV-1 gp120 to CD4+ cells, but also inhibited TNF-α production induced by gp120. Inhibition of HIV-1 infection by CRDS may be related to these two actions.  相似文献   

19.
The three-dimensional solution- and solid-state structures of the human immunodeficiency virus type-1 (HIV-1) matrix protein have been determined recently in our laboratories by NMR and X-ray crystallographic methods (Massiah et al. 1994. J Mol Biol 244:198-223; Hill et al. 1996. Proc Natl Acad Sci USA 93:3099-3104). The matrix protein exists as a monomer in solution at low millimolar protein concentrations, but forms trimers in three different crystal lattices. Although the NMR and X-ray structures are similar, detailed comparisons have revealed an approximately 6 A displacement of a short 3(10) helix (Pro 66-Gly 71) located at the trimer interface. High quality electron density and nuclear Overhauser effect (NOE) data support the integrity of the X-ray and NMR models, respectively. Because matrix apparently associates with the viral membrane as a trimer, displacement of the 3(10) helix may reflect a physiologically relevant conformational change that occurs during virion assembly and disassembly. These findings further suggest that Pro 66 and Gly 71, which bracket the 3(10) helix, serve as "hinges" that allow the 3(10) helix to undergo this structural reorientation.  相似文献   

20.
Svenja Polzer 《FEBS letters》2009,583(7):1201-4222
The N-glycan g15 within the HIV-1 gp120 V3 loop efficiently blocks antibodies to facilitate viral escape from humoral immune responses. However, we have isolated primary viruses all lacking the N-glycosylation site g15 due to mutations (NNNT > YRNA, HNTV, SIQK), which showed resistance to neutralizing antibodies present in autologous or heterologous HIV-1 positive sera. When introduced into the NL4-3 background, the sequences YRNA, HNTV and SIQK caused an increase of viral infectivity and resistance to neutralization. Thus, despite the lack of g15, primary isolates can escape from neutralization because of specific mutations of the NNNT sequence altering coreceptor usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号