首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila Hsp27 is a small heat shock protein displaying exclusive nuclear localization both before and after heat shock. However, the mechanism implicated in this nuclear localization as well as the required sequences, are undefined. This study identifies the Hsp27 sequences mediating its nuclear localization. The generation of chimeric fusions between Hsp27 and Hsp23, a small heat shock protein displaying exclusive cytoplasmic localization, delineated a stretch of 15 amino acids containing a nuclear-targeting activity. Site-directed mutagenesis within this region unveiled the implication of three arginine residues (R54-R55-R56), which differentially combine to form a novel kind of nuclear localization signal (NLS). Abrogation of the nuclear localization signal activity indicated that Drosophila Hsp27 could still enter the nucleus to associate with nuclear speckles in a NLS-independent fashion. Mutagenesis of a putative nuclear export signal unveiled two leucine residues (L50 and L52) specifically involved in the association of Hsp27 to nuclear speckles and revealed novel nuclear structures formed by this Hsp27 mutant. The present study identifies two distinct sets of sequences respectively mediating the nuclear import of Hsp27 and its association to nuclear speckles. These two phenomena are uncoupled and can be separately abrogated.  相似文献   

2.
LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.  相似文献   

3.
Chen QQ  Chen XY  Jiang YY  Liu J 《Cell research》2005,15(7):504-510
ErbB2, a member of the receptor tyrosine kinase family, is frequently over-expressed in breast cancer. Proteolysis of the extracellular domain of ErbB2 results in constitutive activation of ErbB2 kinase. Recent study reported that ErbB2 is found in the nucleus. Here, we showed that ErbB2 is imported into the nucleus through a nuclear localization signal(NLS)-mediated mechanism. The NLS sequence KRRQQKIRKYTMRR (aa655-668) contains three clusters of basic amino acids and it is sufficient to target GFP into the nucleus. However, mutation in any basic amino acid cluster of this NLS sequence significantly affects its nuclear localization. Furthermore, it was found that this NLS is essential for the nuclear localization of ErbB2 since the intracellular domain of Erb2 lacking NLS completely abrogates its nuclear translocation. Taken together, our study identified a novel nuclear localization signal and reveals a novel mechanism underlying ErbB2 nuclear trafficking and localization.  相似文献   

4.
W E Mears  V Lam    S A Rice 《Journal of virology》1995,69(2):935-947
Previous work has shown that the herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 localizes to the cell nucleus and that certain mutant ICP27 polypeptides localize preferentially in nucleoli. To map the signals in ICP27 which mediate its nuclear localization, we identified the portions of ICP27 which can direct a cytoplasmic protein, pyruvate kinase (PK), to nuclei. Our results demonstrate that ICP27 contains multiple nuclear localization signals (NLSs) that function with differing efficiencies. First, ICP27 possesses a strong NLS, mapping to residues 110 to 137, which bears similarity to the bipartite NLSs found in Xenopus laevis nucleoplasmin and other proteins. Second, ICP27 possesses one or more weak NLSs which map to a carboxyl-terminal portion of the protein between residues 140 and 512. Our PK-targeting experiments also demonstrate that ICP27 contains a relatively short sequence, mapping to residues 110 to 152, that can function as a nucleolar localization signal (NuLS). This signal includes ICP27's strong NLS as well as 15 contiguous residues which consist entirely of arginine and glycine. This latter sequence is very similar to an RGG box, a putative RNA-binding motif found in a number of cellular proteins which are involved in nuclear RNA processing. To confirm the results of the PK-targeting experiments, we mutated the ICP27 gene by deleting sequences encoding either the strong NLS or the RGG box. Deletion of the strong NLS (residues 109 to 138) resulted in an ICP27 molecule that was only partially defective for nuclear localization, while deletion of the RGG box (residues 139 to 153) resulted in a molecule that was nuclear localized but excluded from nucleoli. Recombinant HSV-1s bearing either of these deletions were unable to replicate efficiently in Vero cells, suggesting that ICP27's strong NLS and RGG box carry out important in vivo functions.  相似文献   

5.
Aminoacyl-tRNA synthetases, essential components of the cytoplasmic translation apparatus, also have nuclear functions that continue to be elucidated. However, little is known about how the distribution between cytoplasmic and nuclear compartments is controlled. Using a combination of methods, here we showed that human tyrosyl-tRNA synthetase (TyrRS) distributes to the nucleus and that the nuclear import of human TyrRS is regulated by its cognate tRNA(Tyr). We identified a hexapeptide motif in the anticodon recognition domain that is critical for nuclear import of the synthetase. Remarkably, this nuclear localization signal (NLS) sequence motif is also important for interacting with tRNA(Tyr). As a consequence, mutational alteration of the hexapeptide simultaneously attenuated aminoacylation and nuclear localization. Because the NLS is sterically blocked when the cognate tRNA is bound to TyrRS, we hypothesized that the nuclear distribution of TyrRS is regulated by tRNA(Tyr). This expectation was confirmed by RNAi knockdown of tRNA(Tyr) expression, which led to robust nuclear import of TyrRS. Further bioinformatics analysis showed that to have nuclear import of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abandoned, whereas the new NLS was evolved from an anticodon-binding hexapeptide motif. Thus, higher organisms developed a strategy to make tRNA a regulator of the nuclear trafficking of its cognate synthetase. The design in principle should coordinate nuclear import of a tRNA synthetase with the demands of protein synthesis in the cytoplasm.  相似文献   

6.
7.
During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus.  相似文献   

8.
Caspase-3是凋亡过程中的重要作用蛋白。凋亡过程中,胞质定位的Caspase3被激活并进入细胞核中执行功能,但该定位变化的分子机制至今仍不清楚。分析caspase3中的细胞定位信号可以为深入了解该过程提供重要的线索。我们通过构建一系列含Caspase-3不同区段的截短突变体,与GFP融合表达,观察这些突变体在细胞中的定位,以鉴定Caspase-3中的核外运信号NES(Nuclear Export Signal)和核定位信号NLS(Nuclear Localization Signal)。Caspase-3中不存在明显的核定位信号NLS,但存在一个明显的核外运信号NES,该NES信号定位在caspase-3小亚基的C端(氨基酸220-245)。  相似文献   

9.
10.
All steroid receptors possess a bipartite nuclear localization signal sequence (NLS) that localizes within the second zinc finger of their DNA-binding domain. Fine-structure mapping of the rat glucocorticoid receptor (rGS) NLS identified a composite signal composed of three distinct proto-NLSs that function effectively when present in unique pairs. At least one of the rGR proto-NLSs appears to influence receptor trafficking within the nucleus, as revealed by a unique nuclear staining pattern of receptors possessing a point mutation (i.e., arginine at position 496; R496), at proto-NLS, pNLS-2. Specifically, carboxyl-terminal-truncated rGRs possessing various point mutations at R496 localized within a limited number of large foci in nuclei of transiently transfected COS-1 cells. R496 mutations did not affect subnuclear targeting when present in full-length rGR, reflecting a protective effect of the receptor's ligand-binding domain that can be exerted in cis and in trans. The effects of rGR R496 mutations on subnuclear targeting were not autonomous because we also observed a coincident localization of hsp70, the 70-kDa heat shock protein, within nuclear foci that include r496 mutant receptors. The elimination of R496 mistargeting by overexpression of an hsp70 partner (i.e., the DnaJ homologue, HDJ-2/HSDJ) suggests that the hsp70/DnaJ chaperone system is mobilized to specific sites within the nucleus in response to inappropriate targeting or folding of specific mutant receptors. HDJ-2/HSDJ overexpression also corrects defective transactivation and transrepression activity of R496 mutant GRs. Thus, molecular chaperones, such as members of the hsp70 and DnaJ families, may survey the nucleus for misfolded proteins and actively participate in their refolding into biologically active conformational states.  相似文献   

11.
Fibroblast growth factors (FGFs) are secreted regulatory proteins involved in various developmental processes. In vertebrates, the FGF superfamily comprises 22 members. In non-vertebrates, six FGF genes have been identified in Ciona intestinalis, three in Drosophila melanogaster, and two (let-756 and egl-17) in Caenorhabditis elegans. The core of LET-756 shares a 30-50% sequence identity with the various members of the superfamily. The relationships between vertebrate and non-vertebrate FGFs are not clear. We made chimeric FGFs by replacing the core region of LET-756 by the cores of various mammalian, fly, and worm FGFs. LET-756 deleted in its core region was no longer able to rescue the lethal phenotype of a let-756 null mutant, and only chimeras containing the cores of FGFs 9, 16, and 20 showed rescue capacity. This core contains an internal motif of six amino acid residues (EFISIA) whose deletion or mutation abolished both the rescue activity and FGF secretion in the supernatant of transfected COS-1 cells. Chimera containing the core of C. intestinalis FGF9/16/20, a potential ortholog of FGF9 lacking the complete EFISIA motif, was not able to rescue the lethal phenotype or be secreted. However, the introduction of the EFISIA motif restored both activities. The data show that the EFISIA motif in the core of LET-756 is essential for its biological activity and that FGFs 9, 16, and 20, which contain that motif, are functionally close to LET-756 and may be evolutionary related. This non-classical mode of secretion using an internal motif is conserved throughout evolution.  相似文献   

12.
13.
14.
15.
Li HC  Huang EY  Su PY  Wu SY  Yang CC  Lin YS  Chang WC  Shih C 《PLoS pathogens》2010,6(10):e1001162
It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES.  相似文献   

16.
Two members of the ‘AhR family’ (a family which is part of the bHLH-PAS superfamily), aryl hydrocarbon receptor (AhR) and AhR repressor (AhRR), originated from a common ancestor and form a regulatory circuit in xenobiotic signal transduction. AhRR is a nucleocytoplasmic shuttle protein, harboring both a nuclear localization signal (NLS) and a nuclear export signal (NES). Because NLS is dominant over NES, AhRR resides predominantly in the nuclear compartment. The NES of AhRR resembles that of AhR in sensitivity to leptomycin B, whereas the NLS of AhRR is monopartite and is, therefore, distinguished from the reported bipartite NLS of AhR. The NLS deletion mutant of GFP-AhRR was transported into the nuclear compartment in the presence of AhR nuclear translocator (Arnt), suggesting the assembly of an AhRR/Arnt heterodimer complex in the cytoplasmic compartment and Arnt-dependent nuclear translocation of this complex.  相似文献   

17.
The multifunctional nuclear inclusion protein a (NIa) of potyviruses (genus Potyvirus; Potyviridae) accumulates in the nucleus of virus-infected cells for unknown reasons. In this study, two regions in the viral genome-linked protein (VPg) domain of NIa in Potato virus A (PVA) were found to constitute nuclear and nucleolar localization signals (NLS) in plant cells (Nicotiana spp). Amino acid substitutions in both NLS I (residues 4 to 9) and NLS II (residues 41 to 50) prevented nuclear localization, whereas mutations in either single NLS did not. Mutations in either NLS, however, prevented nucleolar localization and prevented or diminished virus replication in protoplasts, accumulation in infected plant tissues, and/or systemic movement in plants. One NLS mutant was partially complemented by the wild-type VPg expressed in transgenic plants. Furthermore, NLS I controlled NIa accumulation in Cajal bodies. The VPg domain interacted with fibrillarin, a nucleolar protein, and depletion of fibrillarin reduced PVA accumulation. Overexpression of VPg in leaf tissues interfered with cosuppression of gene expression (i.e., RNA silencing), whereas NLS I and NLS II mutants, which exhibited reduced nuclear and nucleolar localization, showed no such activity. These results demonstrate that some of the most essential viral functions required for completion of the infection cycle are tightly linked to regulation of the NIa nuclear and nucleolar localization.  相似文献   

18.
19.
The retroviral Gag polyprotein orchestrates the assembly and release of virus particles from infected cells. We previously reported that nuclear transport of the Rous sarcoma virus (RSV) Gag protein is intrinsic to the virus assembly pathway. To identify cis- and trans-acting factors governing nucleocytoplasmic trafficking, we developed novel vectors to express regions of Gag in Saccharomyces cerevisiae. The localization of Gag proteins was examined in the wild type and in mutant strains deficient in members of the importin-beta family. We confirmed the Crm1p dependence of the previously identified Gag p10 nuclear export signal. The known nuclear localization signal (NLS) in MA (matrix) was also functional in S. cerevisiae, and additionally we discovered a novel NLS within the NC (nucleocapsid) domain of Gag. MA utilizes Kap120p and Mtr10p import receptors while nuclear entry of NC involves the classical importin-alpha/beta (Kap60p/95p) pathway. NC also possesses nuclear targeting activity in avian cells and contains the primary signal for the import of the Gag polyprotein. Thus, the nucleocytoplasmic dynamics of RSV Gag depend upon the counterbalance of Crm1p-mediated export with two independent NLSs, each interacting with distinct nuclear import factors.  相似文献   

20.
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA‐binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear‐cytoplasmic trafficking is required for BSMV cell‐to‐cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95–104) and a nuclear localization signal (NLS) (amino acids 227–238). NoLS mutations reduced BSMV cell‐to‐cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine–arginine‐rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV‐infected cells, Fib2 accumulation increased by about 60%–70% and co‐localized with TGB1 in the plasmodesmata. In addition, BSMV cell‐to‐cell movement in fib2 knockdown transgenic plants was reduced to less than one‐third of that of non‐transgenic plants. Fib2 also co‐localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1–Fib2 interactions play a direct role in cell‐to‐cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell‐to‐cell movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号