首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roots of 28 species of epiphytic vascular plants were collected on tree trunks and branches at six afromontane forest sites between 1700 and 3300 m above sea level in Bale Mountains National Park, Ethiopia. Seven of the 28 epiphyte species were colonized by vesicular-arbuscular mycorrhizal fungi (VAM). Mycorrhizal colonization only occurred at two of the six sites examined, at 2900 m and 3300 m, but more than one type of VAM endophyte was present in each case. Three facultative epiphytic species were all highly colonized by VAM on the forest floor, whereas roots from epiphytic habitats were weakly colonized. No correlations were found between VAM colonization, fine root diameter and root hair length, but VAM colonization and root hair abundance were negatively correlated. The lack of VAM colonization of potential, epiphytic host species at the majority of the sites examined points to the dispersal of VAM propagules as the factor limiting mycorrhizal colonization of epiphytic habitats. It is suggested that root systems of hemiepiphytic tree species serve as corridors between forest floor and tree trunks through which VAM may spread via hyphal growth.  相似文献   

2.
Abstract A genetically modified strain of Pseudomonas fluorescens and its parent showed grossly similar decline rates following introduction into subtropical clay and sandy soils. In unplanted clay soit at pH 6.9 and 25°C, population densities declined progressively from about 108 to 103 colony forming units (cfu) g−1 dry soil over 75 days, but in unplanted sandy soil the introduced populations could not be detected after 25 days. In clay soil at pH 8.7 or 4.7, or at environmental temperature, decay rates were enhanced as compared to those at pH 6.9 and 25°C. Counts of introduced strains in clay bulk soil and in rhizosphere and rhizoplane of maize suggested that the introduced bacteria competed well with the native bacteria, and colonized the roots at about 106 cfu g−1 dry root at 25°C, over 20 days. However, rhizoplane colonization was lower at environmental temperature. The decay rate of both strains was slower in planted than in unplanted sandy soil. The population densities in the rhizosphere and rhizoplane in the sandy soil were significantly lower than those in the clay soil. Both introduced strains colonized the maize roots in both soils, using seeds coated with bacteria in 1% carboxymethyl cellulose. Introduced cells were localized at different sites along the roots of plants developing in clay soil, with higher densities in the original (near the seeds) and root hair zones as compared to the intermediate zones. No significant difference was observed between the extent of root colonization of the genetically modified strain and its parent.  相似文献   

3.
The composition and structure of ant communities were used to assess the success of the preliminary restoration program at Ranger uranium mine in the seasonal tropics of northern Australia. Ants were surveyed at eight sites, including two relatively undisturbed control sits, within the Ranger lease. The revegetated sites represented a range of variables likely to influence restoration success: revegetation age (two, four, and eight years), proximity to undisturbed sites (which act as potential sources of recolonization), and burning treatment. Revegetation at most sites was dominated by fast-growing species of Acacia. There was a clear succession of ant species across revegetated sites. Initial colonization was by species of Iridomyrmex, but as plant cover and litter development increased these were replaced by broadly adapted, opportunist species, especially the introduced Paratrechina longicornis. Ant recolonization was very slow at isolated sites, with only 12 species present after eight years (the oldest site available). This compares with 21 species after only four years at a site located close to potential sources of recolonization. The ant community at this site, however, was very similar to that at another site located close to colonization sources, but eight years old. Ant succession therefore appeared to have stalled at this point, with species richness and composition bearing little resemblance to that at control sites. The heavy shade and litter produced by acacias were considered to be the major impediment to further change. Results from a site that had undergone a prescribed burn after two years, thereby breaking dominance by acacias and allowing for the establishment of a wide variety of plant taxa, suggest that such management practices may promote further colonization by ant species.  相似文献   

4.
Aims The fauna of mountains and their surrounding regions are likely to be influenced principally by two biological processes: horizontal colonization along similar altitudinal levels by elements originating from lineages inhabiting higher latitudes; and vertical colonization by lineages from the same latitude, but at lower altitudes. We examine whether the expected patterns derived from the latter process can be observed in mountain dung beetle assemblages. Specifically, we study the variation in species composition and richness with altitude in five regions spanning elevation gradients, analysing whether the altitudinal rates of change in the number of species and genera differ, and whether beta‐diversity scores for adjacent sites in each altitudinal gradient are different for species and genera. Location Eastern Cordillera of the Colombian Andes. Methods Field work was carried out in 1997–99 at 27 sites in five regions with elevation gradients, with 10–32 pitfall traps placed in each site. For each altitudinal level the numbers of species and genera were analysed with respect to altitude, and the slope of the linear regression between these variables was calculated. The slope of the curve of the altitude against the cumulative number of species and genera was also calculated for each altitudinal gradient to describe the compositional change between adjacent sites (beta diversity). Species and generic slopes were compared using analysis of covariance. The turnover of species along each altitudinal gradient was measured using presence/absence data and Cody's beta‐diversity index between adjacent pairs of sites. A cluster analysis was used to detect faunistically homogeneous groups of localities. Results Species richness always decreased with altitude, although the slopes did not differ significantly from zero. The number of genera also decreased with increasing altitude, but generally at a significantly slower rate than for species. Variation in the species beta‐diversity scores between altitudinal levels did not follow a homogeneous pattern in the different regions. Two main altitudinal groups of sites with a boundary c. 1500–1750 m a.s.l. can be detected with respect to faunistic similarity. Low‐ and mid‐altitude sites are inhabited by all of the genera (19) and 80% of all species collected. Eight genera and 61 species (c. 60% of the total) are unable to inhabit high‐altitude sites, and only 20 species appear to be exclusive to these high‐altitude environments (> 2000 m a.s.l.). Main conclusions The dominant processes explaining dung beetle composition in the high north‐eastern Andean mountains are probably those of vertical colonization. The limited role of horizontal colonization processes, or colonization from northern or southern lineages, could be a consequence of the isolation and recent geological origin of these mountains.  相似文献   

5.
The rate of litter decomposition is often expressed as a constant decay rate (k; g g−1 yr−1) or as the time required for a certain percentage (often 95% and estimated as 3/k) of it to decompose (termed turnover time). Estimates of k may be obtained by determining the weight loss of litter in the field and also by assuming a steady state and obtaining the ratio of litter input: standing crop. Both methods were used to estimate decay rate and turnover times for beech and oak branches and twigs decomposing on the forest floor and these were critically evaluated.
Considerable variation, ranging between 1.8–144.5 yr, was found between the 95% turnover time estimates of various size components of the two species, obtained from woodfall and standing crop data. Likewise variation in decay rate of 2–2.5 cm diameter beech branches, estimated from field experiments, was large both between and within groups of branches categorised according to initial state of decay and presence or absence of bark. The mean annual decay rate for the various categories ranged between k = 0.165-0.452 g g−1yr−1. Branches without bark generally decomposed more slowly than those with bark. Beech twig (<0.5 cm diameter) decomposition rates, from field experiments, ranged between k = 0.149-0.220 g g−1yr−1 and variation was relatively low compared with that of branches. No significant differences (P<0.05)were detected between twig decomposition rates obtained from experiments initiated at different seasons although there was a slight decline in decay rate in winter months. Twig and branch decomposition rates fell within the range found in the few other comparable studies.  相似文献   

6.
Assembly of fungal communities remains poorly understood in part because of the daunting range of spatial scales that may be involved in this process. Here, we use individual leaves as a natural sampling unit, comprising spatially distinct habitat and/or resource patches with unique histories and suites of resources. Spatial patterns in fungal beta diversity were tested for consistency with the metacommunity paradigms of species sorting and neutral dynamics. Thirty senesced leaves were collected from the forest floor (O horizon) in replicate upland forest, riparian forest and vernal pool habitats. We quantified spatial distance between leaves, and fungal community composition was assayed by terminal restriction fragment length polymorphism. Significant distance‐decay relationships were detected at all but one upland site. This is the first study where changes in fungal community composition were quantified across discrete adjacent habitat patches, providing evidence that fungal distance decay is operational at a scale of centimetres. Although leaves of differing lignin contents were sampled from each site, leaf type was not consistently important in explaining variation in fungal community composition. However, depth of a leaf within the forest floor significantly influenced community composition at five of six sites. Environmental heterogeneity associated with depth could include moisture gradients, relative influence of soil or spore colonization, and impact of forest floor biotic community (i.e. collembola and earthworms). Because the influence of spatial distance and depth on fungal community composition could not be disentangled, both species‐sorting and neutral processes may be embedded within the distance‐decay relationships that we found.  相似文献   

7.
Environment, dispersal and patterns of species similarity   总被引:2,自引:0,他引:2  
Aim The aim of this paper is to evaluate the combined effects of geographical distance and environmental distance on patterns of species similarity (similarity in species composition between sites), and to identify factors affecting the rate of decay in species similarity with each type of distance. Location Israel. Methods Data on species composition of land snails and land birds were recorded in 27 sites of 1 × 1 km scattered across a rainfall gradient in Israel. Matrices of similarity in species composition between all pairs of sites were computed and analysed with respect to corresponding matrices of geographical distance and rainfall distance (defined as the difference in mean annual rainfall between sites, and used as a measure of environmental distance). Mantel tests were applied to determine the correlation between species similarity and each type of distance. Factors affecting the decay in species similarity were investigated by comparing different subsets of the data using randomization tests. Results Both rainfall distance and geographical distance had negative effects on species similarity. The effect of rainfall distance was statistically significant even after controlling for differences in geographical distance, and vice versa. The per‐unit effect of rainfall distance on species similarity decreased with increasing geographical distance, indicating that the two types of distances interacted in determining the similarity in species composition. Snails showed a higher rate of decay in species similarity with geographical distance than birds, and large snails showed a higher rate of decay than small snails, which are better passive dispersers. The per‐unit effects of both rainfall distance and geographical distance on species similarity were higher in the desert region than in the Mediterranean region. Analyses focusing on a grain size of 10 × 10 m showed a lower similarity in species composition and a lower rate of decay in species similarity with rainfall distance than analyses carried out at a grain size of 1 × 1 km. Main conclusions Patterns of similarity in species composition are influenced by the combined effects of environmental variation, the position of the area along environmental gradients, the dispersal properties of the component species, and the scale (both spatial extent and grain size) at which the patterns are examined.  相似文献   

8.
Aim Two main mechanisms may explain post‐disturbance species colonization patterns of early successional habitats such as those originated by wildfires. First, post‐disturbance colonization is not limited by the dispersal ability of the species to reach the newly created open areas and, secondly, colonization is limited by dispersal. Under the first hypothesis, we expect, at a regional scale, to find similar post‐disturbance communities to develop on recently burned sites. However, colonization limited by dispersal will lead to strong between‐site variations in species composition. Location To test these hypotheses, we studied the post‐fire colonization patterns of nine open‐habitat bird species in eight distantly located wildfires in the north‐eastern Iberian Peninsula. Methods We censused post‐fire bird composition by means of field transects and identified potential colonization sources from species–habitat suitability maps derived from atlas data. Results Our results showed strong significant differences in post‐fire species composition between burnt areas. Burnt areas located in areas with low probability of species presence before the fire event showed lower species occurrence and richness after the fire. Main conclusions These results do not support the idea that early successional stages and open habitats have a homogeneous community structure at regional scales and suggest that dispersal is a key constraint determining bird colonization of post‐fire habitats. Further attention should be paid to landscape heterogeneity as a key factor in determining population dynamics of open‐habitat species in the light of current and future land‐use changes in Mediterranean regions.  相似文献   

9.
Scanning electron microscopy was used to determine the time of initial colonization of the rumen epithelium of young lambs and successive changes with time in the morphological composition of the epimural community. Tissue samples were obtained from two groups of lambs at 1, 2, 4, 6, 8, and 10 weeks of age. Comparisons were made with the epimural communities observed at 12 well-distributed sites in the rumen of a mature wether. Epimural bacteria were already present on the epithelium at 1 week of age. The morphological composition of the epimural community changed with age, with the pattern of succession being similar in both groups of lambs. A total of 24 morphotypes were distinguished by scanning electron microscopy; 17 were rod shaped, 4 were cocci, 2 were spiral, and 1 was filamentous. These morphotypes were further subdivided into: (i) those persisting after their initial colonization in young lambs and present in the adult (7 morphotypes), (ii) those seen only in the adult (2 morphotypes), and (iii) those present only in young lambs (15 morphotypes). The seven morphotypes present in both the lamb and the adult could be considered indigenous members of the epimural community. Several morphotypes appeared restricted in their colonization to certain regions of the papillae, suggesting the presence of microhabitats within the epithelial habitat. Two rod-shaped bacteria were repeatedly seen specifically attached to one another, suggesting an interspecific association.  相似文献   

10.
Because shelter-building herbivorous insect species often consider structural features of their host plants in selecting construction sites, their probability of attack is likely to be a function of some combination of plant architectural traits and leaf quality factors. We tested the hypothesis that plant architecture, in the form of the number of touching leaves, influences interspecific variation in attack by leaf-tying caterpillars in five species of sympatric Missouri oaks (Quercus). We compared colonization on control branches, in which both architecture and leaf quality were potentially important, with colonization on experimental branches for which we controlled for the effects of architecture by creating equal numbers of artificial ties. Colonization of artificial ties was highly correlated with natural colonization on neighboring control branches, suggesting that leaf quality factors and not architecture influenced interspecific variation in attack by leaf-tying caterpillars. Of the leaf quality factors measured (water, protein-binding capacity, nitrogen, specific leaf area, pubescence, and toughness), nitrogen was the most explanatory. With the exception of white oak, natural leaf tie colonization was positively correlated with nitrogen availability (ratio of nitrogen to protein-binding capacity), and negatively correlated with protein-binding capacity of leaf extracts. Both host plant species and subgenus oak influenced the community composition of leaf-tying caterpillars and the non-tying symbionts colonizing the ties. Host plant differences in leaf nitrogen content were positively correlated with pupal weight of one of two caterpillar species reared on all five host plant species. Thus, interspecific differences in nitrogen, nitrogen availability, and protein-binding capacity of leaf extracts are the best predictors at this time of interspecific differences in attack by leaf-tying caterpillars, in turn affecting their success on individual host plants in the laboratory.  相似文献   

11.
The recovery of soil ecological processes during the restoration of tropical forests is greatly influenced by arthropods that live in the litter and soil. However, these communities present complex dynamics, and their colonization patterns are not well understood. In this study, we examined the response patterns of litter and soil arthropods to the ecosystem regeneration process by assessing reforestation sites from two regions of São Paulo State, Brazil, and we compared the data obtained from these sites with data from mature forests. We assessed the arthropod communities using similarity indices and high‐level taxa abundance, with the level of forest succession and the locations of the restoration areas as factors. Forest succession correlated with the species composition as communities from the reforestation sites gradually became more similar to communities from the mature forests, while their quantitative patterns were minimally related. Forest maturation positively affected the richness of the litter community and the abundance of some minor groups, such as Protura, Diplura, and Symphyla. The region influenced the species composition but did not influence the manner in which the communities changed during the maturation process. We also found a convergent soil colonization pattern as arthropod communities from different sites became more similar during forest succession. This finding is consistent with both empirical data and theoretical predictions from the specialized literature, although the subject has been poorly explored until now. We conclude that reforestation allows the colonization of soil and litter fauna in a biased manner.  相似文献   

12.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

13.
Statistical models of species' distributions rely on data on species' occupancy, or use, of sites across space and/or time. For rare or cryptic species, indirect signs, such as dung, may be the only realistic means of determining their occupancy status across broad spatial extents. However, the consequences of sign decay for errors in estimates of occupancy have not previously been considered. If signs decay very rapidly, then false‐negative errors may occur because signs at an occupied site have decayed by the time it is surveyed. On the other hand, if signs decay very slowly, false‐positive errors may occur because signs remain present at sites that are no longer occupied. We addressed this issue by quantifying, as functions of sign decay and accumulation rates: 1) the false‐negative error rate due to sign decay and, 2) the expected time interval prior to a survey within which signs indicate the species was present; as this time interval increases, false‐positives become more likely. We then applied this to the specific example of koala Phascolarctos cinereus occupancy derived from faecal pellet surveys using data on faecal pellet decay rates. We show that there is a clear trade‐off between false‐negative error rates and the potential for false‐positive errors. For the koala case study, false‐negative errors were low on average and the expected time interval prior to surveys that detected pellets indicate the species was present within less than 2–3 yr. However, these quantities showed quite substantial spatial variation that could lead to biased parameter estimates for distribution models based on faecal pellet surveys. This highlights the importance of observation errors arising from sign decay and we suggest some modifications to existing methods to deal with this issue.  相似文献   

14.
Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later‐arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy‐poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem‐level processes.  相似文献   

15.
Summary Ants have been widely used as bioindicators of the success of minesite restoration throughout northern Australia. Our study describes ant species richness, species composition and functional group composition at eight sites undergoing rehabilitation (2–10 years old) at Callide Mine near Biloela, Queensland (680 mm mean annual rainfall) and compares them with those at three nearby, unmined reference sites. We address the extent to which ant communities at rehabilitation sites have converged with those at reference sites and, while we found convergence occurred at only one of the eight sites, we consider this highly noteworthy as it is the only case we are aware of where a rehabilitation minesite has achieved such convergence. Ants were sampled using pitfall traps (15 per site) during January 2001, the period of maximum ant activity. A total of 146 ant species from 34 genera were recorded. Species richness ranged from 36 to 48 (mean of 41) at reference sites, and from seven to 49 at rehabilitation sites (mean of 26). Species richness at rehabilitation sites increased systematically with rehabilitation age. Despite rapid colonization by ants, in most cases, ant communities at rehabilitation sites were markedly different from those at reference sites. However, one rehabilitation site (TH91) was an exception: it had the highest species richness of any site, it grouped with reference sites in multivariate analysis, it supported 'reference' rather than 'rehabilitation' species, and it supported a full range of functional groups. Ground-layer conditions at TH91 were similar to those at reference sites and local, long-lived woody plants had successfully established. We believe these are key factors leading to successful ant community restoration.  相似文献   

16.
Previous studies which investigated macroinvertebrate colonization of submerged wooden substrates in streams and lakes did not consider the wood species. In this study, the genus of randomly collected twigs and branches from two streams was determined microscopically using morphological and structural characteristics of the wood genera. The macroinvertebrate colonization of the wooden substrates was analysed with respect to the different kinds of the twigs and branches. Additionally, an exposition experiment was conducted with the most commonly found wood genera, alder (Alnus) and oak (Quercus), in two different states of decay (freshwood and conditioned wood). The colonization experiment stressed the results of the natural wood samplings that the wood genus plays only a minor role in the colonization by macroinvertebrates.  相似文献   

17.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

18.
Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty‐four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early‐successional to late‐successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late‐successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context.  相似文献   

19.
1. The spacing of branches along central stems was related to growth rate and light level in forest saplings and trees in tropical moist forest on Barro Colorado Island (BCI), Panama. The study included 14 species with tiers of plagiotropic branches (having planar leaf arrangements) and four species with continuous distributions of plagiotropic branches.
2. All species showed increases in branch spacing with increasing light and growth rate of diameter, similar to the patterns in leaf spacing noted previously in species which initially bear large leaves on unbranched stems.
3. Non-tiered species had shorter internodes than tiered species but because the latter bear more branches per node, both groups had similar numbers of branches per unit stem length, when compared at similar growth rates.
4. Differences in the relationship between internode length and growth rate among tiered species were related to demographic characteristics, suggesting that tree architecture may influence forest composition.
5. The strong correlation observed between branch spacing and growth rate suggests that branch spacing may be used to estimate past growth histories of forest tree species with plagiotropic branches.  相似文献   

20.
Biodiversity monitoring programs need to be designed so that population changes can be detected reliably. This can be problematical for species that are cryptic and have imperfect detection. We used occupancy modeling and power analysis to optimize the survey design for reptile monitoring programs in the UK. Surveys were carried out six times a year in 2009-2010 at multiple sites. Four out of the six species - grass snake, adder, common lizard, slow-worm -were encountered during every survey from March-September. The exceptions were the two rarest species -- sand lizard and smooth snake - which were not encountered in July 2009 and March 2010 respectively. The most frequently encountered and most easily detected species was the slow-worm. For the four widespread reptile species in the UK, three to four survey visits that used a combination of directed transect walks and artificial cover objects resulted in 95% certainty that a species would be detected if present. Using artificial cover objects was an effective detection method for most species, considerably increased the detection rate of some, and reduced misidentifications. To achieve an 85% power to detect a decline in any of the four widespread species when the true decline is 15%, three surveys at a total of 886 sampling sites, or four surveys at a total of 688 sites would be required. The sampling effort needed reduces to 212 sites surveyed three times, or 167 sites surveyed four times, if the target is to detect a true decline of 30% with the same power. The results obtained can be used to refine reptile survey protocols in the UK and elsewhere. On a wider scale, the occupancy study design approach can be used to optimize survey effort and help set targets for conservation outcomes for regional or national biodiversity assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号