首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of growth substrates on mycolic acid profiles of PAH-degrading Mycobacterium spp. LB501T, LB307T and VM552 was examined by high-performance liquid chromatography (HPLC) using glucose, alkanes, polycyclic aromatic hydrocarbons (PAH) or Luria-Bertani medium (LB) as the sole carbon source. The substrates gave rise to varying mycolic acid profiles, as bacteria growing on poorly water-soluble substrates exhibited more hydrophobic mycolic acids than cells grown on glucose. Our results indicate that mycobacteria respond to the growth substrate by changing the mycolic acid composition of their cell wall, pointing at the importance of the growth substrate for mycolic acid profiling as an identification method of actinomycetes.  相似文献   

2.
Formation of the epidermal permeability barrier requires delivery of lamellar body (LB) contents to the stratum corneum interstices. LB are enriched in a mixture of polar lipids and a family of hydrolytic enzymes, required for the extracellular processing of the secreted polar lipids into the more hydrophobic products which mediate barrier function. Prior non-quantitative studies show that acute barrier disruption leads to immediate secretion of the contents of performed LB from the outermost layer of granular cells, followed by the synthesis and accelerated secretion of newly-formed (= nascent) organelles over 0.5-4 h. We asked here whether lipids and hydrolytic enzymes are packaged into nascent organelles separately, or in a parallel, linked process. We first quantified the rate of appearance of lipids (by the content of internal lamellae within LB) and enzyme content (by cytochemistry of neutral lipase and acid sphingomyelinase); both are concentrated in LB, and in nascent organelles. Immediately after barrier disruption, the density of LB in the cytosol of the outermost granular cell decreased by > 50% reduction at 30 min, returning to near-normal densities by 4 h. Nascent organelles budded off a trans-Golgi-like reticulum, in the outermost granular cells as early as 30 min. In quantitative studies, LB progressively accumulated lipid and enzyme contents in parallel. However, when lipid/lamellae generation was inhibited with lipid synthesis inhibitors, enzymes did not accumulate in organelles. Likewise, when exogenous physiologic lipids were delivered to sites of LB generation in the face of brefeldin A blockade of organellogenesis, or when lipids were delivered in conjunction with treatment with lipid synthesis inhibitors, enzymes accumulated only in those organelles that displayed lipid content. These studies demonstrate: (a) quantitative changes in the density of LB in the outermost granular cell at various time points after acute barrier disruption; (b) the origin of nascent organelles in a trans-Golgi-like reticulum; (c) co-ordinate packaging of lipid and enzyme contents into nascent organelles; (d) that lipid deposition in nascent organelles is required for enzyme accumulation; and (e) that enzymes can be delivered to nascent organelles, even if the source of lipid is of exogenous rather than endogenous origin.  相似文献   

3.
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria.  相似文献   

4.
There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of Fc?RI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following Fc?RI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.  相似文献   

5.
We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m2/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16–C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.  相似文献   

6.
Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular.  相似文献   

7.
Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.  相似文献   

8.
Triacylglycerols (TAG) and steryl esters (SE) are the principal storage lipids in all eukaryotic cells. In yeasts, these storage lipids accumulate within special organelles known as lipid bodies (LB). In the lipid accumulation-oriented metabolism of the oleaginous yeast Yarrowia lipolytica, storage lipids are mostly found in the form of TAG, and only small amounts of SE accumulate. We report here the identification of a new DAG acyltransferase gene, DGA2, homologous to the ARE genes of Saccharomyces cerevisiae. This gene encodes a member of the type 1 acyl-CoA:diacylglycerol acyltransferase family (DGAT1), which has not previously been identified in yeasts, but is commonly found in mammals and plants. Unlike the Are proteins in S. cerevisiae, Dga2p makes a major contribution to TAG synthesis via an acyl-CoA-dependent mechanism and is not involved in SE synthesis. This enzyme appears to affect the size and morphology of LB, suggesting a direct role of storage lipid proteins in LB formation. We report that the Are1p of Y. lipolytica was essential for sterol esterification, as deletion of the encoding gene (ARE1) completely abolished SE synthesis. Unlike its homologs in yeasts, YlARE1 has no DAG acyltransferase activity. We also reconsider the role and function of all four acyltransferase enzymes involved in the final step of neutral lipid synthesis in this oleaginous yeast.  相似文献   

9.
The aim of this study was twofold: first, to characterize the free extracellular polymeric substances (EPS) and bound EPS produced by Escherichia coli during different growth phases in different media, and then to investigate the role of the free EPS in promoting aggregation. EPS was extracted from a population of E. coli MG1655 cells grown in different media composition (Luria-Bertani (LB) and Luria-Bertani with the addition of 0.5 w/v% glucose at the beginning of the growth phase (LBG)) and at different growth phases (6 and 24 h). The extracted EPS was characterized using Fourier transform infrared spectroscopy and further identified using one-dimensional gel-based electrophoresis and tandem mass spectrometry. E. coli MG1655 was found to produce significantly lower amounts of bound EPS compared to free EPS under all conditions. The protein content of free EPS increased as the cells progressed from the exponential to stationary phase when grown in LB or LBG, while the carbohydrate content only increased across the growth phases for cells grown in LBG. FTIR revealed a variation in the different functional groups such as amines, carboxyl, and phosphoryl groups for free EPS extracted at the different growth conditions. Over 500 proteins were identified in the free EPS, with 40 proteins common in all growth conditions. Proteins with functionality related to amino acid and carbohydrate metabolism, as well as cell wall and membrane biogenesis were among the highest proteins identified in the free EPS extracted from E. coli MG1655 under all growth and media conditions. The role of bound and free EPS was investigated using a standardized aggregation assay. Bound EPS did not contribute to aggregation of E. coli MG1655. The readdition of free EPS to E. coli MG1655 resulted in aggregation of the cells in all growth conditions. Free EPS extracted from the 24 h E. coli MG1655 cultures grown in LB had the greatest effect on aggregation of cells grow in LBG, with a 30% increase in aggregation observed.  相似文献   

10.
The fibroblast cells from normal human skin were cultured on Langmuir-Blodgett (LB) and cast membranes prepared using extracellular matrix proteins (e.g., collagen, fibronectin, laminin and vitronectin). The cell density of the fibroblast cells cultured on the cast membranes was found to be higher than that on the cast membranes made of fibronectin, vitronectin and collagen-blended membranes. This indicates that not only the primary structure of proteins but the preparation methods of the membranes, i.e., casting and LB methods, are a strong factor affecting cell growth. The concentration and production of interferon-β per unit cell were found to be higher on the LB membranes than on the cast membranes made of the same proteins except in the case of collagen. However, the cell density on the cast membranes was higher than that on the LB membranes. These results appear to result from the suppressed growth of NB1-RGB cells on the LB membranes leading to the enhanced production of interferon-β on the LB membranes. The highest production of interferon-β per unit cell was observed for the NB1-RGB cells on the collagen-blended membranes with fibronectin and vitronectin. The collagen-blended membranes appear to offer a more natural and appropriate environment for NB1-RGB cells to produce interferon-β. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3) and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.  相似文献   

12.
Three environmental Mycobacterium strains (LB501T, LB307T and VM552) able to degrade anthracene, phenanthrene or pyrene, respectively, were successfully electroporated with pAL5000-based plasmids containing the green fluorescent protein (gfp) gene of Aequoria victoria under the control of the hsp60 promoter of Mycobacterium bovis following a slightly modified standard procedure. Transformants showed irregular gfp expression profiles. Four plasmid derivatives were constructed that contained gene promoters isolated from, and adapted to, gene expression in polycyclic aromatic hydrocarbon (PAH)-degrading mycobacteria. One derivative directed strong and homogeneous expression of GFP, allowing dual analysis of both GFP- and PAH-derived fluorescence as assessed by confocal laser scanning microscopy. The results reported here demonstrate the suitability of the pAL5000 replicon for the development of recombinant DNA-based studies in PAH-degrading Mycobacterium spp.  相似文献   

13.
Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium‐containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV‐2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.  相似文献   

14.
Mycobacterial metabolic activity is typically measured using time-consuming manual methods based on nutrient consumption, nucleic acid synthesis or reduction of tetrazolium salts. In this study, we propose much simpler electrochemical methods for continuous monitoring of the metabolic activity of mycobacteria in culture. Chronoamperometry and chronopotentiometry were used to detect metabolic activity of both slow-growing and fast-growing mycobacteria using a potentiostat with 2D-electrochemical cell. Electrochemical measurements were able to detect statistically significant differences in the metabolic activity of approximately 10(7) mycobacteria in different growth conditions, within less than 24?h of mycobacterial culture. The metabolic activity of mycobacteria measured by the used electrochemical methods correlated well with changes in general respiratory conditions within the cells as it was evaluated by different biochemical tests. Chronoamperometry and chronopotentiometry allowed measurement of mycobacterial metabolic activity without invasive chemical reactions, at minimal bacterial load and when metabolic response of mycobacteria occurs quickly. The proposed methodology is simple, rapid and cost-effective, and it is expected that both in vitro and in vivo metabolic activity of human mycobacterial pathogens as Mycobacterium tuberculosis can be measured when the implementation of this method to analyze virulent strains is adapted.  相似文献   

15.
16.
A microcolony technique has been demonstrated as being useful for the rapid determination of the viabilities of single cells of Myocbacterium fortuitum. Cultures of M. fortuitum grown to early logarithmic phase in broth were treated with the sputum digestant N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) for periods of 10 to 40 s. After growth for three generations (7.5 h) on agar films, viabilities were determined by counting under a phase contrast microscope. The viable mycobacteria grew into microcolonies that exhibited extensive branching, whereas the nonviable mycobacteria remained as single cells. Sputum was mixed with some broth cultures before treatment to stimulate the digestion process in a clinical laboratory. When broth cultures were treated with sputum digestant for 40 s, only 2.8% of the cells remained viable. When the broth cultures were mixed in a ratio of 1:4 with sputum and then treated for 40 s, 16.4% of the cells remained viable. The results also indicate M. fortuitum is very sensitive to the digestant. The results also indicate that a microcolony technique could be used for the assessment of the viability of mycobacteria.  相似文献   

17.
A microcolony technique has been demonstrated as being useful for the rapid determination of the viabilities of single cells of Myocbacterium fortuitum. Cultures of M. fortuitum grown to early logarithmic phase in broth were treated with the sputum digestant N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) for periods of 10 to 40 s. After growth for three generations (7.5 h) on agar films, viabilities were determined by counting under a phase contrast microscope. The viable mycobacteria grew into microcolonies that exhibited extensive branching, whereas the nonviable mycobacteria remained as single cells. Sputum was mixed with some broth cultures before treatment to stimulate the digestion process in a clinical laboratory. When broth cultures were treated with sputum digestant for 40 s, only 2.8% of the cells remained viable. When the broth cultures were mixed in a ratio of 1:4 with sputum and then treated for 40 s, 16.4% of the cells remained viable. The results also indicate M. fortuitum is very sensitive to the digestant. The results also indicate that a microcolony technique could be used for the assessment of the viability of mycobacteria.  相似文献   

18.
Polychlorobiphenyls (PCBs) are toxic and persistent organic pollutants that are widely distributed in the environment. Burkholderia xenovorans LB400 is capable of degrading aerobically an unusually wide range of PCBs. However, during PCB-degradation B. xenovorans LB400 generates reactive oxygen species (ROS) that affect its viability. The aim of this study was to increase the efficiency of PCB-degradation of B. xenovorans LB400 by adding antioxidant compounds that could increase tolerance to oxidative stress. The effect of antioxidant compounds on the growth, morphology and PCB-degradation by B. xenovorans LB400 was evaluated. α-Tocopherol or vitamin E (vitE) and berry extract (BE) increased slightly the growth of strain LB400 on biphenyl, whereas in presence of ascorbic acid or vitamin C (vitC) an inhibition of growth was observed. The growth of B. xenovorans LB400 in glucose was inhibited by the addition of 4-chlorobiphenyl (4-CB). Interestingly, in presence of α-tocopherol the growth of strain LB400 was less affected by 4-CB. By transmission electronic microscopy it was observed that α-tocopherol preserved the cell membranes and improved cell integrity of glucose-grown LB400 cells exposed to 4-CB, suggesting a protective effect of α-tocopherol. Notably, α-tocopherol increased biphenyl and 4-CB degradation by B. xenovorans LB400 in an aqueous solution. The effect of antioxidants compounds on PCB-bioremediation was evaluated in agricultural soil spiked with 2-chlorobiphenyl (2-CB), 4-CB and 2,4'-chlorobiphenyl (2,4'-CB). For bioaugmentation, LB400 cells grown on biphenyl and subsequently incubated with pyruvate were added to the soil. Native soil microbiota was able to remove PCBs. Bioaugmentation with strain LB400 increased strongly the PCB-degradation rate. Bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract increased further the PCB degradation. Half-life of 2,4'-CB decreased by bioaugmentation from 24 days to 4 days and by bioaugmentation in presence of α-tocopherol and berry extract to 2 days. By bioaugmentation with strain LB400, 85% of 2,4'-CB was degraded in 20 days, whereas bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract reduced the time to less than 13 days. This indicates that antioxidant compounds stimulated PCB-degradation in soil. Therefore, the addition of antioxidant compounds constitutes an attractive strategy for the scale-up of aerobic PCB-bioremediation processes.  相似文献   

19.
Phagocytosis of invading microorganisms by specialized cells such as macrophages and neutrophils is a key component of the innate immune response. These cells capture and engulf pathogens and subsequently destroy them in intracellular vacuoles—the phagosomes. Pathogen phagocytosis and progression and maturation of pathogen-containing phagosomes, a crucial event to acquire microbicidal features, occurs in parallel with accentuated formation of lipid-rich organelles, termed lipid bodies (LBs), or lipid droplets. Experimental and clinical infections with different pathogens such as bacteria, parasites, and viruses induce LB accumulation in cells from the immune system. Within these cells, LBs synthesize and store inflammatory mediators and are considered structural markers of inflammation. In addition to LB accumulation, interaction of these organelles with pathogen-containing phagosomes has increasingly been recognized in response to infections and may have implications in the outcome or survival of the microorganism within host cells. In this review, we summarize our current knowledge on the LB-phagosome interaction within cells from the immune system, with emphasis on macrophages, and discuss the functional meaning of this event during infectious diseases.  相似文献   

20.
The performance of the immunochromatographic assay, SD BIOLINE TB Ag MPT64 RAPID?, was evaluated in Madagascar. Using mouse anti-MPT64 monoclonal antibodies for rapid discrimination between the Mycobacterium tuberculosis complex and nontuberculous mycobacteria, the kit was tested on mycobacteria and other pathogens using conventional methods as the gold standard. The results presented here indicate that this kit has excellent sensitivity (100%) and specificity (100%) compared to standard biochemical detection and can be easily used for the rapid identification of M. tuberculosis complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号