首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.  相似文献   

2.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   

3.
The use of Syrian hamster embryo cells for assessing genotoxicity provides the unique opportunity to determine 5 different end-points (gene mutations, DNA-strand breaks, aneuploidy, DNA repair (unscheduled DNA synthesis, UDS) and neoplastic transformation) in the one cell system. This approach allows direct comparisons of results produced under identical conditions of dose at target, metabolism and bioavailability. We report here on the characterization of an additional end-point in the same cell system: the formation of micronuclei indicating chromosomal changes induced by chemicals. For a preliminary validation of this new test system we have investigated 14 carcinogens and 3 non-carcinogenic structural analogues in order to evaluate the significance of micronucleus induction for carcinogenic properties. All tested carcinogens induced micronuclei in a dose-dependent manner; all non-carcinogens yielded negative results. Correlations between the formation of micronuclei and the Ames test, induction of UDS, cell transformation and the in vivo bone marrow micronucleus test are demonstrated.  相似文献   

4.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

5.
o-Aminoazotoluene (AAT) has been evaluated as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). The Ames test found it to be mutagenic in the presence of a metabolic activation system, whereas it has little clastogenicity either in vitro or in vivo in the chromosomal aberration assay. AAT is also carcinogenic in the lung or liver of mice and rats given long-term administrations. Therefore, metabolites generated in the liver etc. may have gene mutation activity, and carcinogenesis would occur. We examined the mutagenicity of AAT in a gene mutation assay, using lacZ transgenic mice (MutaMice) and a positive selection method. AAT showed positive results for organs with metabolic functions, such as liver and colon and other organs. Positive results were also seen in an Ames test in the presence of metabolic activation and negative results seen in a chromosomal aberration test. Therefore, AAT had the potential to cause gene mutation in the presence of metabolic activation systems in vitro and the same reaction was confirmed in vivo with organs with metabolic function, such as liver and colon, but little clastogenicity in vitro or in vivo. Thus, metabolites with gene mutation activity may be responsible for the carcinogenicity of AAT. The transgenic mouse mutation assay proved to be useful for concurrent assessment of in vivo mutagenicity in multiple organs and to supplement the standard in vivo genotoxicity tests, such as the micronucleus assay which is limited to bone marrow as the only target organ.  相似文献   

6.
An approach is described that enables the germ cell mutagenicity of chemicals to be assessed as part of an integrated assessment of genotoxic potential. It is recommended, first, that the genotoxicity of a chemical be defined by appropriate studies in vitro. This should involve use of the Salmonella mutation assay and an assay for the induction of chromosomal aberrations, but supplementary assays may be indicated in specific instances. If negative results are obtained from these 2 tests there is no need for the conduct of additional tests. Agents considered to be genotoxic in vitro should then be assessed for genotoxicity to rodents. This will usually involve the conduct of a bone marrow cytogenetic assay, and in the case of negative results, a genotoxicity test in an independent tissue. Agents found to be non-genotoxic in vivo are regarded as having no potential for germ cell mutagenicity. Agents found to be genotoxic in vivo may either be assumed to have potential as germ cell mutagens, or their status in this respect may be defined by appropriate germ cell mutagenicity studies. The basis of the approach, which is supported by the available experimental data, is that germ cell mutagens will be evident as somatic cell genotoxins in vivo, and that these will be detected as genotoxins in vitro given appropriate experimentation. The conduct of appropriate and adequate studies is suggested to be of more value than the conduct of a rigid set of prescribed tests.  相似文献   

7.
In vivo genotoxicity tests play a pivotal role in genotoxicity testing batteries. They are used both to determine if potential genotoxicity observed in vitro is realised in vivo and to detect any genotoxic carcinogens that are poorly detected in vitro. It is recognised that individual in vivo genotoxicity tests have limited sensitivity but good specificity. Thus, a positive result from the established in vivo assays is taken as strong evidence for genotoxic carcinogenicity of the compound tested. However, there is a growing body of evidence that compound-related disturbances in the physiology of the rodents used in these assays can result in increases in micronucleated cells in the bone marrow that are not related to the intrinsic genotoxicity of the compound under test. For rodent bone marrow or peripheral blood micronucleus tests, these disturbances include changes in core body temperature (hypothermia and hyperthermia) and increases in erythropoiesis following prior toxicity to erythroblasts or by direct stimulation of cell division in these cells. This paper reviews relevant data from the literature and also previously unpublished data obtained from a questionnaire devised by the IWGT working group. Regulatory implications of these findings are discussed and flow diagrams have been provided to aid in interpretation and decision-making when such changes in physiology are suspected.  相似文献   

8.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

9.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

10.
Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.  相似文献   

11.
Issues of biological relevance and thresholds for genotoxicity are discussed here based upon the background of experience with the submissions for the approval of new pharmaceuticals to the German regulatory authority over the period between 1990 and 1997. This experience shows that out of the genotoxicity test systems which are required according to existing guidelines in the European Union (EU), the in vitro tests for chromosomal aberrations (CA) and the mouse lymphoma tk assays (MLA) yield a rate of positives that is about four-fold higher than that of other genotoxicity tests. A detailed analysis of chemical and pharmacological classes of compounds and their effects in these systems reveals that in addition to direct DNA reactivity several mechanisms of indirect genotoxicity such as nucleoside analogue incorporation into DNA, interaction with microtubule assembly, topoisomerase inhibition and high levels of cytotoxicity are relevant. New pharmaceuticals, for which the latter mechanisms apply, often display threshold-like characteristics in their genotoxic effects in vitro or even in vivo in experimental animals. This casts doubt upon the relevance of positive in vitro test results for such compounds. However, the discussion of examples shows that it may not be easy to demonstrate the exact thresholded mechanism of genotoxicity in a given case. In particular, the demonstration of a coincidence of genotoxicity and high levels of cytotoxicity, which seems to be a major factor for biologically non-relevant in vitro positive new pharmaceuticals, usually requires quite extensive testing. Hence, for new pharmaceuticals it is practice to provide in addition to in vitro results that may be thresholded a wealth of information from in vivo studies on genotoxicity, carcinogenicity, metabolism, pharmacokinetics, etc. the results of which help in assessing the biological relevance of in vitro positives. The regulatory acknowledgement of biologically non-relevant, thresholded mechanisms of (in vitro) genotoxicity in addition to those that are considered relevant for human risk ensures a better understanding of test results and is needed for the credibility of genotoxicity testing practice in general.  相似文献   

12.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes.We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types.Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing.It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery.Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1–256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

13.
D Clive 《Mutation research》1988,205(1-4):313-330
The present analysis examines the assumptions in, the perceptions and predictivity of and the need for short-term tests (STTs) for genotoxicity in light of recent findings that most noncarcinogens from the National Toxicology Program are genotoxic (i.e., positive in one or more in vitro STTs). Reasonable assumptions about the prevalence for carcinogens (1-10% of all chemicals), the sensitivity of these STTs (ca. 90% of all carcinogens are genotoxic) and their estimated "false positive" incidence (60-75%) imply that the majority of chemicals elicit genotoxic responses and, consequently, that most in vitro genotoxins are likely to be noncarcinogenic. Thus, either the usual treatment conditions used in these in vitro STTS are producing a large proportion of artifactual and meaningless positive results or else in vitro mutagenicity is too common a property of chemicals to serve as a useful predictor of carcinogenicity or other human risk. In contrast, the limited data base on in vivo STTs suggests that the current versions of these assays may have low sensitivity which appears unlikely to improve without dropping either their 'short-term' aspect or the rodent carcinogenicity benchmark. It is suggested that in vivo genotoxicity protocols be modified to take into consideration both the fundamentals of toxicology as well as the lessons learned from in vitro genetic toxicology. In the meantime, while in vivo assays are undergoing rigorous validation, genetic toxicology, as currently practiced, should not be a formal aspect of chemical or drug development on the grounds that it is incapable of providing realistic and reliable information on human risk. It is urged that data generated in new, unvalidated in vivo genotoxicity assays be exempted from the normal regulatory reporting requirements in order to encourage industry to participate in the laborious and expensive development of this next phase of genetic toxicology.  相似文献   

14.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

15.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

16.
There has been much discussion in recent years regarding the most appropriate follow-up testing in vivo when positive results are obtained in vitro but the in vivo micronucleus (MN) test (traditionally the most widely-used test) is negative. Not all rodent carcinogens give positive results in the micronucleus test, and so it has been common practice to include a second in vivo assay such as the unscheduled DNA synthesis (UDS) test. This has proved useful but is usually limited to analysis of rodent (usually rat) liver. With the increased evaluation and use of other in vivo assays, e.g. for transgenic mutations (TG) and DNA damage (Comet assay) it was important to investigate their usefulness. We therefore examined the published in vivo UDS, TG and Comet-assay results for 67 carcinogens that were negative or equivocal in the micronucleus test. Between 30 and 41 chemicals were evaluated in each of the three in vivo tests, with some overlap. In general, the UDS test was disappointing and gave positive results with <20% of these carcinogens, some of which induced tumours in rat liver and produced DNA adducts in vivo. The TG assay gave positive responses with >50% of the carcinogens, but the Comet assay detected almost 90% of the micronucleus-negative or equivocal carcinogens. This pattern of results was virtually unchanged when the in vitro profile (gene mutagen or clastogen) was taken into account. High sensitivity (ability to detect carcinogens as positive) is only really useful when the specificity (ability to give negative results with non-carcinogens) is also high. Based on small numbers of publications with non-carcinogens, the TG and Comet assays gave negative results with non-carcinogens on 69 and 78% of occasions, respectively. Although further evaluation of the Comet and TG assays, particularly with non-carcinogens, is needed, these data suggest that they both should play a more prominent role in regulatory testing strategies than the UDS test.  相似文献   

17.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

18.
Ortho-phenyl phenol (OPP) is broad-spectrum of fungicides and antibacterial agents. OPP tested negative in an Ames system and positive with respect to the formation of tumors in the urinary bladder in rats when administered in diet, showing attributes of an Ames test-negative carcinogen. It has also been demonstrated that OPP does not bind or cleave DNA in vivo or in vitro, rather dose-dependent protein binding in OPP-treated rats was observed. OPP, however, generates chromosomal aberrations including aneuploidy. Thus, the steps by which Ames test-negative carcinogens exert their effects need to be elucidated. Here, we used an assay of loss of heterozygosity (LOH) in Saccharomyces cerevisiae to determine the biological effects of OPP and its hepatic metabolite phenyl hydroquinone (PHQ). LOH was found to be induced by OPP and PHQ because of a functional chromosome loss: aneuploidy. PHQ bound to and interfered with the depolymerization of tubulin in vitro and arrested the cell-cycle at M and G1. These results indicate that OPP and PHQ damaged tubulin to cause mis-segregation of chromosome by delaying cell-cycle progression through mitosis, and as a consequence caused aneuploidy.  相似文献   

19.
A survey has been conducted of 222 chemicals evaluated for carcinogenicity in mice and rats by the United States NCI/NTP. The structure of each chemical has been assessed for potential electrophilic (DNA-reactive) sites, its mutagenicity to Salmonella recorded, and the level of its carcinogenicity to rodents tabulated. Correlations among these 3 parameters were then sought. A strong association exists among chemical structure (S/A), mutagenicity to Salmonella (Salm.) and the extent and sites of rodent tumorigenicity among the 222 compounds. Thus, a approximately 90% correlation exists between S/A and Salm. across the 115 carcinogens, the 24 equivocal carcinogens and the 83 non-carcinogens. This indicates the Salmonella assay to be a sensitive method of detecting intrinsic genotoxicity in a chemical. Concordance between S/A and Salm. have therefore been employed as an index of genotoxicity, and use of this index reveals two groups of carcinogens within the database, genotoxic and putatively non-genotoxic. These two broad groups are characterized by different overall carcinogenicity profiles. Thus, 16 tissues were subject to carcinogenesis only by genotoxins, chief among which were the stomach, Zymbal's glands, lung, subcutaneous tissue and circulatory system. Conclusions of carcinogenicity in these 16 tissues comprised 31% of the individual chemical/tissue reports of carcinogenicity. In contrast, both genotoxins and non-genotoxins were active in the remaining 13 tissues, chief among which was the mouse liver which accounted for 24% of all chemical/tissue reports of carcinogenicity. Further, the group of 70 carcinogens reported to be active in both species and/or in 2 or more tissues contained a higher proportion of Salmonella mutagens (70%) than observed for the group of 45 single-species/single-tissue carcinogens (39%). 30% of the 83 non-carcinogens were mutagenic to Salmonella. This confirms earlier observations that a significant proportion of in vitro genotoxins are non-carcinogenic, probably due to their non-absorption or preferential detoxification in vivo. Also, only 30% of the mouse liver-specific carcinogens were mutagenic to Salmonella. This is consistent with tumors being induced in this tissue (and to a lesser extent in other tissues of the mouse and rat) by mechanisms not dependent upon direct interaction of the test chemical with DNA. Detection of 103 of the 115 carcinogens could be achieved by use of only male rats and female mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The measurement of serine139-phosphorylated histone H2AX (γH2AX) provides a biomarker of DNA double-strand breaks (DSBs) and may identify potential genotoxic activity. In order to evaluate a flow cytometry assay for γH2AX detection (hereafter termed the γH2AX by flow assay), 6 prototypical (3 pro- and 3 proximate) genotoxins, i.e. dimethylbenz[a]anthracene (DMBA), 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P), methyl methane sulphonate (MMS), methyl nitrosourea (MNU) and 4-nitroquinoline oxide (4NQO), were selected to define assay evaluation criteria. In addition, 3 non-genotoxic cytotoxins (phthalic anhydride, n-butyl chloride and hexachloroethane) were included to investigate the influence of cytotoxicity on assay performance. At similar cytotoxicity levels (relative cell counts; RCC 75-40%) all prototypical genotoxins induced marked concentration-dependent increases in γH2AX compared with the non-genotoxins. As a result, assay evaluation criteria for a positive effect were defined as >1.5-fold γH2AX @ RCC >25%. Twenty five additional chemicals with diverse structures and genotoxic activity were selected to evaluate the γH2AX by flow assay. Results were compared with Ames bacterial and in vitro mammalian genotoxicity tests (mouse lymphoma assay and/or chromosome aberration assay). γH2AX by flow assay results were highly predictive of Ames (sensitivity 100%; specificity 67%; concordance 82%) and in vitro mammalian genotoxicity tests (sensitivity 91%; specificity 89%; concordance 91%) and provide additional evidence that γH2AX is a biomarker of potential genotoxic activity, underpinned mechanistically by the cellular response to DSBs. Discordant findings were predominately attributed to differences in specificity for some mammalian cell genotoxins that are Ames non-mutagens or for "biologically-irrelevant" positives in the mammalian tests. Simple anilines were classified as genotoxic following rat liver S9-mediated bioactivation, however, effects on γH2AX were atypical and limited to a small sub-population of S-phase nuclei. Nevertheless, the γH2AX by flow assay represents a novel genotoxicity assay with the potential to flag both pro- and proximate genotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号