首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An analytical methodology for the analysis of methamidophos in water and soil samples incorporating a molecularly imprinted solid-phase extraction process using methamidophos-imprinted polymer was developed. Binding study demonstrated that the polymer exhibited excellent affinity and high selectivity to the methamidophos. Evidence was also found by FT-IR analysis that hydrogen bonding between the CO(2)H in the polymer cavities and the NH(2) and P=O of the template was the origin of methamidophos recognition. The use of molecularly imprinted solid-phase extraction improved the accuracy and precision of the GC method and lowered the limit of detection. The recovery of methamidophos extracted from a 10.0 g soil sample at the 100 ng/g spike level was 95.4%. The limit of detection was 3.8 ng/g. The recovery of methamidophos extracted from 100 mL tap and river water at 1 ng/mL spike level was 96.1% and 95.8%, and the limits of detection were 10 and 13 ng/L respectively. These molecularly imprinted solid-phase extraction procedures enabled selective extraction of polar methamidophos successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

2.
采用沉淀聚合法制备孔雀石绿分子印迹聚合物(MG-MIPs),以洗脱效率及吸附量为指标,考察超声波辅助抽提法对MIPs中MG洗脱效果及吸附性能的影响,通过扫描电镜观察MIPs的表面形态,并对其吸附性能进行研究。结果表明:模板分子MG在超声30 min、超声10次、料液比m(MG-MIPs)∶V(甲醇-乙酸溶液)为1∶10(g/m L)、温度为25℃、超声功率为270 W的条件下,洗脱效果最好,MIPs在固相萃取柱中的吸附效率较高,达到198μg/g。  相似文献   

3.
As the daminozide (DM) and its metabolite have been identified to be potentially carcinogenic, rapid detection method for them is necessary for food safety. A type of piezoelectric crystal sensor has been prepared by using a molecularly imprinted polymer (MIP) as recognition element. The molecularly imprinted polymer was prepared by hot-induced precipitation polymerization, and then the polymer particles were fixed on the surface of the electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to evaluate the obtained imprinted polymer particles and the MIP sensitive film coated on the electrode. The results showed that a typical time-response curve of the MIP-coated crystal to the DM solution had been given, frequency shifts versus logarithm changes of DM showed good linear correlation within the concentration range of 1.0x10(-9) to 10(-6) mg/mL (y=11.38 lg x+115.45, r=0.9872) and 1.0x10(-6) to 10(-1) mg/mL (y=25.22lgx+209.44, r=0.9938), respectively. The detection limit was 5.0x10(-8) mg/mL (S/N=3), which is lower than that of conventional methods. Further, computer simulation technology was employed to investigate the interaction between methacrylic acid and DM for elucidating the recognition mechanism. The influencing factor pH has also been investigated. The injection experiments of DM structurally related compounds indicated that the obtained sensor has high sensitivity, excellent selectivity, low cost, good reproducibility, and reusable property by combining with piezoelectric crystal and molecularly imprinted polymer.  相似文献   

4.
In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%.  相似文献   

5.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

6.
Zhang Z  Liao H  Li H  Nie L  Yao S 《Analytical biochemistry》2005,336(1):108-116
A piezoelectric sensor coated with a thin molecularly imprinted sol-gel film has been developed for the determination of L-histidine in the liquid phase. Without preprotection, L-histidine was imprinted directly into silica sol-gel films that consisted of a hybrid mixture of functionalized organosilicon precursors (phenyltrimethoxysilane and methyltrimethoxysolane). The viscoelasticity of the film in the air and in buffer solution has been studied by the piezoelectric quartz crystal impedance technique. The binding of L-histidine to the imprinted film in the liquid phase was investigated by the piezoelectric microgravimetry and electrochemical impedance technique. Scatchard analysis showed that the maximum binding site (Qmax) of the L-histidine imprinted sol-gel film is about 23.7 micromol/g. A linear range from 5.0x10(-8) to 1.0x10(-4) M for a detection of L-histidine has been observed with a detection limit of 2.5x10(-8) M for S/N=3. The proposed imprinted sol-gel sensor exhibits good stability, high specificity, and excellent stereoselectivity.  相似文献   

7.
Fluorescence anisotropy studies of molecularly imprinted polymers.   总被引:1,自引:0,他引:1  
A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene-imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs) and non-MIPs bound with analytes to understand MIP's binding behaviour. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range 0.11-0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime of tau = 0.64 ns and a rotational correlation time of phi(F) = 1.2-1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (tau = 2.03 ns and phi(F) = 2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in situ.  相似文献   

8.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

9.
A novel method based on the molecularly imprinted solid-phase extraction (MISPE) procedure has been developed for the simultaneous determination of concentrations of sulfonylurea herbicides such as chlorsulfuron (CS), monosulfuron (MNS), and thifensulfuron methyl (TFM) in maize samples by liquid chromatography–tandem quadrupole mass spectrometry (LC–MS/MS). The molecularly imprinted polymer (MIP) for sulfonylurea herbicides was synthesized by precipitation polymerization using chlorsulfuron as the template molecule, 2-(diethylamino)ethyl methacrylate (DEAMA) as the functional monomer, and trimethylolpropane trimethacrylate (TRIM) as the cross-linker. The selectivities of the chlorsulfuron template and its analogs on the molecularly imprinted polymer were evaluated by high-performance liquid chromatography (HPLC). The extraction and purification procedures for the solid-phase extraction (SPE) cartridge with a molecularly imprinted polymer as the adsorbent for the selected sulfonylurea herbicides were then established. A molecularly imprinted solid-phase extraction method followed by high-performance liquid chromatography–tandem mass spectrometry for the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl was also established. The mean recoveries of these compounds in maize were in the range 75–110% and the limits of detection (LOD) of chlorsulfuron, monosulfuron, and thifensulfuron methyl were 0.02, 0.75, and 1.45 μg kg−1, respectively. It was demonstrated that the MISPE–HPLC–MS/MS method could be applied to the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl in maize samples.  相似文献   

10.
Molecularly imprinted polymers (MIPs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery in 1972, molecularly imprinted polymers have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. They have been utilized as sensors, catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography, mimics of enzymes, receptors and antibodies. Among which, the application of molecularly imprinted polymers for molecular recognition-based separation and screening of compounds has undergone rapid extension and received much attention in recent years. This article mainly focuses on the separation and screening of certain pharmacophoric compounds of interests from biological origin using molecular imprinting technology. Examples of extraction and recognition of active components as anti-tumors or anti-Hepatitis C virus inhibitors from Chinese traditional herbs using molecularly imprinting technology are particularized in this article. Comparison between the screening effect based on MIPs and that based on antibodies is also represented. Consequently the merits and demerits of these two technologies are highlighted.  相似文献   

11.
Group-selective molecularly imprinted polymers (MIPs) made from sulfonamides (SAs) using functional monomer methacrylic acid (MAA) were synthesized. The derived molecularly imprinted solid-phase extraction (MISPE) cartridges were developed for the purification and enrichment of aquatic products. The optimum template molecule and the ratio of the functional monomer to the template for obtaining group selectivity to SAs were sulfadimethoxine (SDM) and 4:1, respectively. The MIPs were characterized by Brunauer-Emmett-Teller (BET), scatchard plot, and chromatography analysis, all of which demonstrate better chromatographic behavior and group-selectivity of MIPs for SAs compared with those of corresponding NIPs. The extraction conditions of MISPE for six SAs were optimized; the method precision and accuracy were satisfactory for the fish and shrimp samples at 0.05, 0.1, and 0.2 mg kg(-1) spiked levels. Recoveries ranging from 85.5% to 106.1% (RSD, 1.2-7.0%, n=3) were achieved. The limits of detection (S/N=3) and quantitation (S/N=10) in the shrimp and fish samples were achieved from 8.4 to 10.9 μg kg(-1) and from 22.4 to 27.7 μg kg(-1), respectively. Therefore, the obtained MIPs and MISPE can be employed for the enrichment and clean-up of SAs. This paper presents a new analytical method which enables the simultaneous determination and quantification of SAs in aquaculture products.  相似文献   

12.
A useful approach was proposed to easily synthesize molecularly imprinted adsorbent for the purification of tylosin from broth. Firstly, by molecular simulation based on density functional theory, methacrylic acid was chosen as a functional monomer by comparing the binding energy. Second, a novel method of polymerization based on precipitation polymerization with added seeds was used in water-mixed solvent for the preparation of water-compatible micron-sized MIP. Its static adsorption capacity for tylosin in aqueous solution was estimated to be 106.5 mg/g with the highest imprinting factor (IF) of 3.6. The selectivity coefficient (α) of tylosin to desmycosin was 3.3. The antibiotic in fermentation broth could be purified by means of molecularly imprinted solid phase extraction (MISPE), which allows MIP to be used for the purification of tylosin from a complex sample.  相似文献   

13.
Feng L  Liu Y  Tan Y  Hu J 《Biosensors & bioelectronics》2004,19(11):1513-1519
Despite the increasing number of applications of biosensors in many fields, the construction of a steady biosensor remains still challenging. The high selectivity and stability of molecularly imprinted polymers for the template molecule make them ideal alternatives as recognition elements for sensors. In this work, the fabrication and characterization of biosensor based on molecularly imprinted electrosynthesized polymers is reported as the first case of imprinting sorbitol. A relevant molecularly imprinted film is prepared by o-phenylenediamine (o-PD) using the electrochemical method. Quartz crystal microbalance is employed as a sensitive apparatus of biosensor for the determination of sorbitol. An equation is deduced to characterize the interaction between molecularly imprinted films and the template. A linear relationship between the frequency shift and the concentration of analyte in the range of 1-15 mM was found. The detection limit is about 1mM.  相似文献   

14.
There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N? porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 μm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm?2 hr?1 bar?1. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput.  相似文献   

15.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

16.
A molecularly imprinted polymer (MIP) has been prepared using levonorgestrel (LEV) as template. The polymer was synthesised in a non-covalent approach using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linking monomer via a free radical polymerization. An equivalent blank polymer was also synthesised in the absence of the template compound. Batch adsorption experiments were used to evaluate the binding affinity of the imprinted polymer. After packing MIP into a stainless steel column (150 mm x 4.6 mm i.d.), retention and elution of the template and related compounds were evaluated by high-performance liquid chromatography (HPLC). This LEV imprinted polymer was further applied for selective solid phase extraction (SPE) of LEV from human serum. It was confirmed that the binding ability of the prepared MIP for LEV was essentially sufficient in the presence of other compounds coexisting in serum sample. Therefore, as a selective and efficient solid phase material, LEV imprinted polymer has a high potential application in analysis of this steroidal hormone in clinical purposes.  相似文献   

17.
Despite the increasing number of applications of molecularly imprinted polymers (MIPs) in analytical chemistry, the construction of a biomimetic voltammetric sensor remains still challenging. This work investigates the development of a voltammetric sensor for vanillylmandelic acid (VMA) based on acrylic MIP-modified electrodes. Thin layers of MIPs for VMA have been prepared by spin coating the surface of a glassy carbon electrode with the monomers mixture (template, methacrylic acid, a cross-linking agent and solvent), followed by in situ photopolymerisation. After extraction of the template molecule, the peak current recorded with the imprinted sensor after rebinding was linear with VMA concentration in the range 19-350 microg ml(-1), whereas the response of the control electrode is independent of incubation concentration, and was about one-tenth of the value recorded with the imprinted sensor at the maximum concentration tested. Under the conditions used, the sensor is able to differentiate between VMA and other closely structural-related compounds, such as 3-methoxy-4-hydroxyphenylethylene glycol (not detected), or 3,4- and 2,5-dihydroxyphenilacetic acids, which are adsorbed on the bare electrode surface but not at the polymer layer. Homovanillic acid was detected with the imprinted sensors after incubation, indicating that the presence of both methoxy and carboxylic groups in the same position as in VMA is necessary for effective binding in the imprinted sites. Nevertheless, both species can be differentiated by the oxidation potential. It can be concluded that MIP-based voltammetric electrodes are very promising analytical tool for the development of highly selective analytical sensors.  相似文献   

18.
A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4‐hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co‐exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Molecularly imprinted polymers are highly stable and can be sterilised, making them ideal for use in biotransformation process. In this communication, we describe a novel application of molecularly imprinted polymers in an enzymatic reaction. The enzymatic condensation of Z-L-aspartic acid with L-phenylalanine methyl ester to give Z-L-Asp-L-Phe-OMe (Z-aspartame) was chosen as a model system to evaluate the applicability of using molecularly imprinted polymers to facilitate product formation. When the product-imprinted polymer is present, a considerable increase (40%) in product yield is obtained. Besides their use to enhance product yields, as demonstrated here, we suggest that imprinted polymers may also find use in the continuous removal of toxic compounds during biochemical reactions.  相似文献   

20.
Naturally occurring steroids such as progesterone, testosterone and 17β-estradiol were analyzed in this study. These bio-identical molecules paradoxically can be either beneficial or harmful. Unfortunately as growth promoters can be toxic and cancerogenic at elevated levels. Due to difficulty in monitoring at trace quantities of these hormones in biological matrices specific adsorption materials molecularly imprinted polymers (MIPs) were used for preconcentration and clean up in sample preparation step. A non-covalent imprinting approach was used for bulk polymerization of progesterone, testosterone and 17β-estradiol imprinted polymers. Synthesis of MIPs was achieved by thermal, UV and γ irradiation initiated polymerization whereby were used methacrylic acid (MAA), 4-vinylpyridine (4-VP) as functional monomers, ethylene glycol dimethacrylate (EDMA), trimethylolpropane trimethacrylate (TRIM) as cross-linking agents and acetonitrile, isooctane–toluene (1:99, v/v) and chloroform as porogen solvents. It was also used as initiator 2,2′-azobis(2-methylpropionitrile) (AIBN) or benzyl methyl ether (BME). The MIPs were applied as selective sorbents in solid-phase extraction (SPE). Molecularly imprinted solid-phase extraction (MISPE) considered as hyphenated technique were applied in extraction step before HPLC-DAD analysis of steroids from human urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号