首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jiang A  Liu C  Song Y  Liu F  Li Q  Wu Z  Yu L  Lv Y 《PloS one》2011,6(9):e24960

Background

We have observed at our clinical work that acute lung injury (ALI) often occurs in patients transplanted with donor livers persevered for long time. So, we conducted this study to investigate the influence of cold preservation time (CPT) of donor liver on ALI induced by liver transplantation (LT), and further study the role of nuclear factor-κB (NF-κB) in the process.

Methods

Wistar rats were used as donors and recipients to establish orthotopic rat liver transplantation models. Donor livers were preserved at 4°C for different lengths of time. The effect of NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC), on ALI was detected. All samples were harvested after 3 h reperfusion. The severity of liver injury was evaluated first. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in liver tissue and liver outflow serum were measured respectively. The severity indexes of ALI, the activity of NF-κB and inhibitor-κBα (I-κBα) in lung/liver were measured accordingly.

Results

With the prolonged liver CPT, the liver damage associated indexes and ALI-related indexes all increased significantly. TNF-α and IL-1β in liver outflow serum increased accordingly, and the activity of NF-κB in liver/lung increased correspondingly. All these ALI-associated indexes could be partially reversed by the use of PDTC.

Conclusions

Extended CPT aggravates the damage of donor liver and induces the expressions of TNF-α and IL-1β in liver. These inflammatory factors migrate to lung via liver outflow blood and activate NF-κB in lung, inducing ALI finally. NF-κB may play a critical role in LT-related ALI. Patients with or at risk of ALI may benefit from acute anti-inflammatory treatment with PDTC.  相似文献   

2.
Induction of NF-κB-mediated gene expression has been identified in the pathogenesis of alcoholic liver disease (ALD). Diethylcarbamazine (DEC) is a piperazine derivative drug with anti-inflammatory properties. The present study was designed to evaluate the effect of DEC on NF-κB pathways in mice undergoing alcoholism induced hepatic inflammation. Forty male C57BL/6 mice were divided equally into four groups: control group (C); DEC-treated group, which received 50 mg/kg (DEC50); alcoholic group (EtOH), submitted to chronic alcohol consumption and the alcohol-DEC treated group (EtOH50), submitted to chronic alcoholism consumption plus DEC treatment. Histological analysis of the alcoholic group showed evident hepatocellular damage which was reduced in EtOH50 group. Immunohistochemistry and western blot results showed elevated expression of inflammatory markers such as MDA, TNF-α, IL-1β, COX-2 and iNOS in hepatocytes of EtOH group. However, low immunopositivity for these markers was detected following DEC treatment. In the EtOH group the activation of NF-κB was observed by an increase in the expression of both NF-κB and pNF-κB in hepatocytes. This expression was significantly reduced in livers of EtOH50 group. Protein expression of Iκβα was measured to determine whether activation of NF-κB might be the result of Iκβα degradation. It was observed that expression of this protein was low in EtOH group, while animals treated with DEC had a high expression of Iκβα. The results of the present study indicate that DEC alleviates alcoholic liver injury, in part by the inhibiting activation of NF-κB and by suppressing the induction of NF-κB-dependent genes.  相似文献   

3.
Sepsis is a life-threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis. Wogonin is the compound extracted from the medicinal plant Scutellaria baicalensis Geogi and was found to exert therapeutic effects in multiple inflammatory diseases via alleviation of oxidative stress. However, whether wogonin is able to mitigate septic liver injury remains unknown. Herein, we firstly proved that wogonin treatment could improve survival of mice with lipopolysaccharide (LPS)- or caecal ligation and puncture (CLP)-induced sepsis, together with restoration of reduced body temperature and respiratory rate, and suppression of several pro-inflammatory cytokines in circulation. Then, we found that wogonin effectively alleviated liver injury via potentiation of the anti-oxidative capacity. To be specific, wogonin activated Nrf2 thereby promoting expressions of anti-oxidative enzymes including NQO-1, GST, HO-1, SOD1 and SOD2 in hepatocytes. Moreover, wogonin-induced Nrf2 activation could suppress NF-κB-regulated up-regulation of pro-inflammatory cytokines. Ultimately, we provided in vivo evidence that wogonin activated Nrf2 signalling, potentiated anti-oxidative enzymes and inhibited NF-κB-regulated pro-inflammatory signalling. Taken together, this study demonstrates that wogonin can be the potential therapeutic agent for alleviating liver injury in sepsis by simultaneously ameliorating oxidative stress and inflammatory response through the activation of Nrf2.  相似文献   

4.
Modulation of NF-κB signalling by microbial pathogens   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
Spinal cord injury (SCI), a major cause of disability, causes high global disease and economic burdens. Stress-induced phosphoprotein 1 (STIP1) has been identified to be involved in spinal cord ischaemia-reperfusion injury (SCII); however, the effect of STIP1 on SCII remains unclear until now. This study aimed to examine the role of STIP1 in SCII and unravel the possible mechanisms. Western blotting and immunohistochemical staining showed that STIP1 expression rapidly increased and then decreased in rat spinal cord following SCII treatment. Neurological function scoring, HE staining, immunohistochemical staining and Western blotting revealed that STIP1 overexpression alleviated SCII-induced motor dysfunction of hind limbs, neuronal loss and inflammation in spinal cord, and inhibited activity of nuclear factor kappa B (NF-κB) signalling in rats. Immunoprecipitation identified that STIP1 was co-located with Iba-1. In addition, STIP1 was found to ameliorate oxygen and glucose deprivation (OGD)-induced inflammation and activation of NF-κB signalling in mouse microglia BV2 cells, and STIP1 resulted in decrease of heat shock protein family A member 8 (HSPA8), increase of IκBβ expression and reduced binding of IκBβ to HSPA8 in BV2 cells. The results of the present study demonstrate that STIP1 alleviates ischaemia/reperfusion-induced neuronal injury and inflammation in rat spinal cord and mouse microglial cells by deactivating NF-κB signalling. These findings may provide novel insights for the clinical diagnosis and treatment of SCI.  相似文献   

7.
8.
9.
10.
In this study, we examined effects of the three-dimensional (3D)-clinorotation, a simulated-model of microgravity, on proliferation/differentiation of rat myoblastic L6 cells. Differentiation of L6 cells into myotubes was significantly disturbed in the 3D-clinorotation culture system, although the 3D-clinorotation had no effect on the proliferation. The 3D-clinorotation also suppressed the expression of myogenesis marker proteins, such as myogenin and myosin heavy chain (MHC), at the mRNA level. In association with this reduced differentiation, we found that the 3D-clinorotation prevented accumulation of ubiquitinated proteins, compared with non-rotation control cells. Based on these findings, we focused on the ubiquitin-dependent degradation of IκB, a myogenesis inhibitory protein, to clarify the mechanism of this impaired differentiation. A decline in the amount of IκB protein in L6 cells was significantly prevented by the rotation, while the amount of the protein in the non-rotated cells decreased along with the differentiation. Furthermore, the 3D-clinorotation reduced the NF-κB-binding activity in L6 cells and prevented the ubiquitination of IκB proteins in the IκB- and ubiquitin-expressing Cos7 cells. Other myogenic regulatory factors, such as deubiquitinases, cyclin E and oxygen, were not associated with the differentiation impaired by the clinorotation. Our present results suggest that simulated microgravity such as the 3D-clinorotation may disturb skeletal muscle cell differentiation, at least in part, by inhibiting the NF-κB pathway.  相似文献   

11.
The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-κB activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP+EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-l-arginine methyl ester (l-NAME) simultaneously with EPO administration (CLP+EPO+l-NAME). A fifth group (CLP+EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP+EPO rats presented significantly higher inulin clearance than did CLP and CLP+EPO+l-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP+EPO rats; and inulin clearance was significantly higher in CLP+EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP+EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-α activation, NF-κB activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-κB downregulation.  相似文献   

12.
Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development and homeostasis. There is growing evidence that impaired autophagy leads to the pathogenesis of diverse diseases. However, the role of autophagy in intestinal epithelium is not clearly understood, although previous studies have pointed out the possibility for the relationships of autophagy with bowel inflammation. In this study, we investigated the involvement of autophagy in intestinal epithelium with inflammatory responses. We generated the mice with a conditional deletion of Atg7, which is one of the autophagy regulated gene, in intestinal epithelium. In Atg7-deficient small intestinal epithelium, LPS-induced production of TNF-α and IL-1β mRNA was enhanced in comparison to the control small intestinal tissues. In addition, the degree of LPS-induced activation of NF-κB was promoted in Atg7-deficient intestinal epithelium. These results demonstrate that autophagy can attenuate endotoxin-induced inflammatory responses in intestinal epithelium resulting in the maintenance of intestinal homeostasis.  相似文献   

13.
14.
15.
ABSTRACT

Advanced glycation end products (AGE) are those of the most powerful pathogenic factors that related to diabetic complications. In our study, we investigated the beneficial effects of thymol on AGE induced cell injury and apoptosis in human podocytes (HPCs) and attempted to clarify its mechanisms. Our results revealed that stimulation with AGE could significantly activate RhoA/NF-κB pathway. Results showed thymol could markedly suppress inflammatory responses, cell apoptosis and disordered cytoskeleton. Also thymol restored the expression of podocin, restrained migration capacity. Western blot analysis indicated that it could restore the expression of RhoA, ROCK and vimentin, nephrin, podocin and p65 and IκBα phosphorylation. Moreover, si-RhoA also suppressed the expression of pro-inflammatory cytokines, ROCK, and vimentin and the phosphorylation of p65 and IκBα. In conclusion, thymol inhibits AGE-induced cell injury in HPCs by suppressing the RhoA-NF-κB pathway and may be apromising therapeutic agent.  相似文献   

16.
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.  相似文献   

17.
18.
Ginkgo biloba, a natural biflavonoid isolated from Ginkgo biloba leaves, is reported to have strong anti-inflammatory and immunosuppressive properties. The aim of this study is to investigate the potential anti-inflammatory mechanisms of ginkgo flavonoids on cerebral ischemia/reperfusion (I/R) injury. Inflammatory-associated cytokines in cerebral ischemic hemispheres were determined by immunohistochemical staining, Western blot and enzyme-like immunosorbent assay (ELISA). Our results indicated that treatment with Ginkgetin significantly restored rat brain I/R-induced neurological deficit scores. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in Ginkgetin treatment group (100 mg/kg) also significantly reduced. The expression inflammation-related protein prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) was also decreased in Ginkgetin treatment group. However, the expression of interleukin-10 (IL-10) was remarkably increased. Thus, this study demonstrates that Ginkgetin protects neurons from I/R-induced rat injury by down-regulating pro-inflammatory cytokines and blocking the TLR4/NF-κB pathway.  相似文献   

19.
20.
Acute kidney injury (AKI) is the most common kidney disease in hospitalized patients with high mortality. Ischemia and reperfusion (I/R) is one of the major causes of AKI. The combination of α-ketoglutarate+malate (αKG/MAL) showed the ability to reduce hypoxia-induced damage to isolated proximal tubules. The present study utilizes a rat model of I/R-induced AKI accompanied by intensive biomonitoring to examine whether αKG/MAL provides protection in vivo. AKI was induced in male Sprague-Dawley rats by bilateral renal clamping (40 min) followed by reperfusion (240 min). αKG/MAL was infused continuously for 60 min before and 45 min after ischemia. Normoxic and I/R control groups received 0.9% NaCl solution. The effect of αKG/MAL was evaluated by biomonitoring, blood and plasma parameters, histopathology, and immunohistochemical staining for kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), as well as by determination of tissue ATP and nonesterified fatty acid concentrations. Intravenous infusion of αKG/MAL at a cumulative dose of 1 mmol/kg each (146 mg/kg αKG and 134 mg/kg MAL) did not prevent I/R-induced increases in plasma creatinine, histopathological alterations, or cortical ATP depletion. On the contrary, the most notable adverse affect in animals receiving αKG/MAL was the decrease in mean arterial blood pressure, which was also accompanied by a reduction in heart rate. Supplementation with αKG/MAL, which is very protective against hypoxia-induced injury in isolated proximal tubules, does not protect against I/R-induced renal injury in vivo, possibly due to cardiovascular depressive effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号