首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The transition from a Drosophila ovarian germline stem cell (GSC) to its differentiated daughter cell, the cystoblast, is controlled by both niche signals and intrinsic factors. piwi and pumilio (pum) are essential for GSC self-renewal, whereas bag-of-marbles (bam) is required for cystoblast differentiation. We demonstrate that Piwi and Bam proteins are expressed independently of each other in reciprocal patterns in GSCs and cystoblasts. However, overexpression of either one antagonizes the other in these cells. Furthermore, piwi;bam double mutants phenocopy the bam mutant. This epistasis reflects the niche signaling function of piwi because depleting piwi from niche cells in bam mutant ovaries also phenocopies bam mutants. Thus, bam is epistatic to niche Piwi, but not germline Piwi function. Despite this, bam- ovaries lacking germline Piwi contain approximately 4-fold fewer germ cells than bam- ovaries, consistent with the role of germline Piwi in promoting GSC mitosis by 4-fold. Finally, pum is epistatic to bam, indicating that niche Piwi does not regulate Bam-C through Pum. We propose that niche Piwi maintains GSCs by repressing bam expression in GSCs, which consequently prevents Bam from downregulating Pum/Nos function in repressing the translation of differentiation genes and germline Piwi function in promoting germ cell division.  相似文献   

4.
5.
6.
7.
8.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.  相似文献   

9.
Stem cells are responsible for replacing damaged or dying cells in various adult tissues throughout a lifetime. They possess great potential for future regenerative medicine and gene therapy. However, the mechanisms governing stem cell regulation are poorly understood. Germline stem cells (GSCs) in the Drosophila testis have been shown to reside in niches, and thus these represent an excellent system for studying relationships between niches and stem cells. Here we show that Bmp signals from somatic cells are essential for maintaining GSCs in the Drosophila testis. Somatic cyst cells and hub cells express two Bmp molecules, Gbb and Dpp. Our genetic analysis indicates that gbb functions cooperatively with dpp to maintain male GSCs, although gbb alone is essential for GSC maintenance. Furthermore, mutant clonal analysis shows that Bmp signals directly act on GSCs and control their maintenance. In GSCs defective in Bmp signaling, expression of bam is upregulated, whereas forced bam expression in GSCs causes the GSCs to be lost. This study demonstrates that Bmp signals from the somatic cells maintain GSCs, at least in part, by repressing bam expression in the Drosophila testis. dpp signaling is known to be essential for maintaining GSCs in the Drosophila ovary. This study further suggests that both Drosophila male and female GSCs use Bmp signals to maintain GSCs.  相似文献   

10.
11.
vasa (vas) is transcribed earliest among reported genes expressed in the germ-line progenitors, or pole cells, in Drosophila melanogaster embryos. Its expression is detected in the germ-line cells throughout their development, making vas expression a useful marker for the establishment of germ-line fate. In the present report, it is shown that maternal Nos and Pum are required for normal expression of vas in pole cells. First, expression of enhancer-trap marker BC69, which reflects vas expression, is promoted by maternal Nos and Pum. Second, expression of vas mRNA in pole cells is promoted by maternal Nos and Pum. Third, pole cell transplantation experiments reveal that maternal Nos and Pum are required autonomously in pole cells for proper expression of vas. Finally, Nos and Pum are dispensable for vas expression in oogenesis, although they are expressed zygotically in adult ovaries. These observations show that germ-line-specific vas expression is promoted by autonomous function of maternal Nos and Pum in the germ-line progenitors during embryogenesis, and is regulated differentially in embryogenesis and oogenesis.  相似文献   

12.
In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.  相似文献   

13.
Harris RE  Ashe HL 《EMBO reports》2011,12(6):519-526
Drosophila ovarian germline stem cells (GSCs) are maintained by the extracellular BMP2/4 orthologue Dpp, which is produced from the surrounding somatic niche. The Dpp signal has a short range; it induces a response in GSCs within the niche, but is rapidly extinguished in their progeny only one cell-diameter away. To ensure the correct balance between stem-cell maintenance and differentiation, several regulatory mechanisms that modulate the Dpp signal at many stages of the pathway have been described. Here, we discuss the nature of the ovarian Dpp signal and review the catalogue of mechanisms that regulate it, demonstrating how the exquisite modulation of Dpp signalling in this context can result in precise and robust control of stem-cell fate. This modulation is applicable to other stem-cell environments that use BMPs as a niche signal, and the regulatory mechanisms are conceptually relevant to several other stem-cell systems.  相似文献   

14.
Abdominal patterning in Drosophila requires the function of Nanos (nos) and Pumilio (pum) to repress posterior translation of hunchback mRNA. Here we provide the first functional analysis of nanos and pumilio genes during blastodermal patterning of a short-germ insect. We found that nos and pum in the red flour beetle Tribolium castaneum crucially contribute to posterior segmentation by preventing hunchback translation. While this function seems to be conserved among insects, we provide evidence that Nos and Pum may also act on giant expression, another gap gene. After depletion of nos and pum by parental RNAi, Hunchback and giant remain ectopically at the posterior blastoderm and the posterior Krüppel (Kr) domain is not being activated. giant may be a direct target of Nanos and Pumilio in Tribolium and presumably prevents early Kr expression. In the absence of Kr, the majority of secondary gap gene domains fail to be activated, and abdominal segmentation is terminated prematurely. Surprisingly, we found Nos and Pum also to be involved in early head patterning, as the loss of Nos and Pum results in deletions and transformations of gnathal and pre-gnathal anlagen. Since the targets of Nos and Pum in head development remain to be identified, we propose that anterior patterning in Tribolium may involve additional maternal factors.  相似文献   

15.
16.
The maternal RNA-binding proteins Pumilio (Pum) and Nanos (Nos) act together to specify the abdomen in Drosophila embryos. Both proteins later accumulate in pole cells, the germline progenitors. Nos is required for pole cells to differentiate into functional germline. Here we show that Pum is also essential for germline development in embryos. First, a mutation in pum causes a defect in pole-cell migration into the gonads. Second, in such pole cells, the expression of a germline-specific marker (PZ198) is initiated prematurely. Finally, pum mutation causes premature mitosis in the migrating pole cells. We show that Pum inhibits pole-cell division by repressing translation of cyclin B messenger RNA. As these phenotypes are indistinguishable from those produced by nos mutation, we conclude that Pum acts together with Nos to regulate these germline-specific events.  相似文献   

17.
A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.  相似文献   

18.
19.
Cell proliferation and patterning must be coordinated for the development of properly proportioned organs. If the same molecules were to control both processes, such coordination would be ensured. Here we address this possibility in the Drosophila wing using the Dpp signaling pathway. Previous studies have shown that Dpp forms a gradient along the AP axis that patterns the wing, that Dpp receptors are autonomously required for wing cell proliferation, and that ectopic expression of either Dpp or an activated Dpp receptor, Tkv(Q253D), causes overgrowth. We extend these findings with a detailed analysis of the effects of Dpp signaling on wing cell growth and proliferation. Increasing Dpp signaling by expressing Tkv(Q253D) accelerated wing cell growth and cell cycle progression in a coordinate and cell-autonomous manner. Conversely, autonomously inhibiting Dpp signaling using a pathway specific inhibitor, Dad, or a mutation in tkv, slowed wing cell growth and division, also in a coordinate fashion. Stimulation of cell cycle progression by Tkv(Q253D) was blocked by the cell cycle inhibitor RBF, and required normal activity of the growth effector, PI3K. Among the known Dpp targets, vestigial was the only one tested that was required for Tkv(Q253D)-induced growth. The growth response to altering Dpp signaling varied regionally and temporally in the wing disc, indicating that other patterned factors modify the response.  相似文献   

20.
Exploring adult stem cell dynamics in normal and disease states is crucial to both better understanding their in vivo role and better realizing their therapeutic potential. Here we address the division frequency of Germline Stem Cells (GSCs) in testes of Drosophila melanogaster. We show that GSC division frequency is under genetic control of the highly conserved Epidermal Growth Factor (EGF) signaling pathway. When EGF signaling was attenuated, we detected a two-fold increase in the percentage of GSCs in mitotic division compared to GSCs in control animals. Ex vivo and in vivo experiments using a marker for cells in S-phase of the cell cycle showed that the GSCs in EGF mutant testes divide faster than GSCs in control testes. The increased mitotic activity of GSCs in EGF mutants was rescued by restoring EGF signaling in the GSCs, and reproduced in testes from animals with soma-depleted EGF-Receptor (EGFR). Interestingly, EGF attenuation specifically increased the GSC division frequency in adult testes, but not in larval testes. Furthermore, GSCs in testes with tumors resulting from the perturbation of other conserved signaling pathways divided at normal frequencies. We conclude that EGF signaling from the GSCs to the CySCs normally regulates GSC division frequency. The EGF signaling pathway is bifurcated and acts differently in adult compared to larval testes. In addition, regulation of GSC division frequency is a specific role for EGF signaling as it is not affected in all tumor models. These data advance our understanding concerning stem cell dynamics in normal tissues and in a tumor model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号