首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive approach used for stimulating the brain, and has proven effective in the treatment of depression, however the mechanism of its antidepressant action is unknown. Recently, we have reported the induction of kf-1 in rat frontal cortex and hippocampus after chronic antidepressant treatment and repeated electroconvulsive treatment (ECT). In this study, we demonstrated the induction of kf-1 after rTMS in the rat frontal cortex and hippocampus, but not in hypothalamus. Our data suggest that kf-1 may be a common functional molecule that is increased after antidepressant treatment, ECT and rTMS. In conclusion, it is proposed that induction of kf-1 may be associated with the treatment induced adaptive neural plasticity in the brain, which is a long-term target for their antidepressant action.  相似文献   

2.
Previously, we have identified 200 cDNA fragments as antidepressant related genes/ESTs. In this study, using these cDNAs, we developed our original cDNA microarray for rapid secondary screening of candidate genes as the novel therapeutic targets. With this microarray, we found that the expression of a novel gene, ADRG34, was significantly increased in rat hippocampus which had been chronically treated with a selective serotonin reuptake inhibitor antidepressant, sertraline. RT-PCR analysis also demonstrated the induction of ADRG34 at mRNA levels in rat hippocampus and the frontal cortex. This cDNA encoded 685 amino acid residues containing a RING-H2 finger motif at the carboxy-terminal. Sequence analysis of ADRG34 with the EMBL/GenBank database showed significant homology to mouse and human kf-1 gene. Our data suggest that ADRG34, a possible rat homologue of kf-1, may be one of the common functional molecules induced after chronic antidepressant treatment.  相似文献   

3.
A deficit in the serotonin 5-HT(1A) receptor has been found in panic and post-traumatic stress disorders, and genetic inactivation of the receptor results in an anxiety-like phenotype in mice on both the C57Bl6 and Swiss-Webster genetic backgrounds. Anxiety is associated with increased neuronal activity in the prefrontal cortex and here we describe changes in glutamate and GABA uptake of C57Bl6 receptor null mice. Although these alterations were not present in Swiss-Webster null mice, we have previously reported reductions in GABA(A) receptor expression in these but not in C57Bl6 null mice. This demonstrates that inactivation of the 5-HT(1A) receptor elicits different and genetic background-dependent perturbations in the prefrontal cortex GABA/glutamate system. These perturbations can result in a change in the balance between excitation and inhibition, and indeed both C57Bl6 and Swiss-Webster null mice show signs of increased neuronal excitability. Because neuronal activity in the prefrontal cortex controls the extent of response to anxiogenic stimuli, the genetic background-specific perturbations in glutamate and GABA neurotransmission in C57Bl6 and Swiss-Webster 5-HT(1A) receptor null mice may contribute to their shared anxiety phenotype. Our study shows that multiple strains of genetically altered mice could help us to understand the common and individual features of anxiety.  相似文献   

4.
Emx1 is a mouse homologue of the Drosophila homeobox gene empty spiracles and its expression is restricted to the neurons in the developing and adult cerebral cortex and hippocampus. We reported previously the creation of a line of transgenic mice in which the cre gene was placed directly downstream of the putative Emx1 promoter using ES cell technology. We showed that Cre protein was present in the cerebral cortex of the transgenic mice and was able to mediate loxP-specific recombination in vitro. In the present study, the specificity and efficiency of the cre-mediated recombination were determined using three independent lines of reporter mice and a combination of histochemical staining, neuronal culture, and Southern detection of the genomic DNA. Our results showed that the recombination was highly efficient in all three lines of reporter mice tested and confirmed that the deletion was restricted to the neurons in the cerebral cortex and hippocampus. Furthermore, we have determined that the recombination efficiency in the cerebral cortex was 91%. Our results suggest that Emx1 is not expressed in every neuron in the developing and adult cerebral cortex. This line of cre mice should contribute to the studies of cortical development and plasticity.  相似文献   

5.
6.
7.
The α2δ subunit of voltage‐sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2δ subunit is up‐regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2δ subunit are associated with pathological states. Here, we examined the expression of the α2δ‐1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety‐like behavior in the following 72 h, as shown by the light–dark test. Anxiety was associated with an increased expression of the α2δ‐1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2δ‐1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety‐like behavior in TMT‐exposed mice, but not in control mice. These data offer the first demonstration that the α2δ‐1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease‐dependent drug in the treatment of anxiety disorders.  相似文献   

8.
Inositol plays a key role in dopamine, serotonin, noradrenaline and acetylcholine neurotransmission, and inositol treatment is reported to have beneficial effects in depression and anxiety. Therefore, a reduction in brain intracellular inositol levels could be a cause of some psychiatric disorders, such as depression or anxiety. To determine the behavioural consequences of inositol depletion, we studied the behaviour of sodium-dependent myo-inositol cotransporter-1 heterozygous knockout mice. In heterozygous mice, free inositol levels were reduced by 15% in the frontal cortex and by 25% in the hippocampus, but they did not differ from their wild-type littermates in cholinergic-mediated lithium-pilocarpine seizures, in the apomorphine-induced stereotypic climbing model of dopaminergic system function, in the Porsolt forced-swimming test model of depression, in amphetamine-induced hyperactivity, or in the elevated plus-maze model of anxiety. Reduction of brain inositol by more than 25% may be required to elicit neurobehavioural effects.  相似文献   

9.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   

10.
Epigenetic mechanisms are crucial to regulate the expression of different genes required for neuronal plasticity. Neurotoxic substances such as arsenic, which induces cognitive deficits in exposed children before any other manifestation of toxicity, could interfere with the epigenetic modulation of neuronal gene expression required for learning and memory. This study assessed in Wistar rats the effects that developmental arsenic exposure had on DNA methylation patterns in hippocampus and frontal cortex. Animals were exposed to arsenic in drinking water (3 and 36ppm) from gestation until 4 months of age, and DNA methylation in brain cells was determined by flow cytometry, immunohistochemistry and methylation-specific polymerase chain reaction (PCR) of the promoter regions of reelin (RELN) and protein phosphatase 1 (PP1) at 1, 2, 3 and 4 months of age. Immunoreactivity to 5 methyl-cytosine was significantly higher in the cortex and hippocampus of exposed animals compared to controls at 1 month, and DNA hypomethylation was observed the following months in the cortex at high arsenic exposure. Furthermore, we observed a significant increase in the non-methylated form of PP1 gene promoter at 2 and 3 months of age, either in cortex or hippocampus. In order to determine whether this exposure level is associated with memory deficits, a behavioral test was performed at the same age points, revealing progressive and dose-dependent deficits of fear memory. Our results demonstrate alterations of the methylation pattern of genes involved in neuronal plasticity in an animal model of memory deficit associated with arsenic exposure.  相似文献   

11.
Emx1 is a mouse homologue of the Drosophila homeobox gene empty spiracles. Its expression is limited to the neurons in developing and adult cerebral cortex and hippocampus. Because of the highly restricted expression pattern of the Emx1 gene, it would be quite desirable to characterize the promoter of the Emx1 for directing foreign gene expression in the transgenic mouse. We report here that we have achieved the Emx1-specific expression in transgenic mice by inserting the lacZ reporter and cre genes directly into the exon 1 of the Emx1 gene using embryonic stem (ES) cell technology. The distribution of the beta-galactosidase activity in the transgenic mice was consistent with the published results obtained using in situ hybridization and immunohistochemistry. Furthermore, we have demonstrated that Cre protein was present in the cerebral cortex of the transgenic mice and was able to mediate loxP-specific recombination in vitro. The creation of this line of cre transgenic mice, and the demonstration that the insertion site located in the exon 1 of the Emx1 gene could render foreign genes a specific expression pattern restricted to the developing and adult cerebral cortex and hippocampus, should be conducive to further studies of the effect of a gene mutation or overexpression upon the development and plasticity of cerebral cortex and hippocampus.  相似文献   

12.
Anxiety is known to be influenced by both adverse childhood experiences and genetic susceptibility factors. A polymorphism in the brain‐derived neurotrophic factor (BDNF) gene modulates the association between adverse early experiences and risk for anxiety and depression in adulthood. An animal model of this gene‐by‐environment risk factor is lacking. Using two different early environmental manipulations, we found that a heterozygous null mutation in the mouse BDNF gene moderated the long‐term effect of maternal care on innate anxiety behavior. Although changes in maternal care were associated with mild changes in anxiety in wild‐type mice, this effect was magnified in heterozygous null BDNF mice with high‐ and low‐maternal care associated with low and high levels, respectively, of avoidance behavior as measured in the open field and elevated plus maze tests. These data argue for an increased sensitivity to early environmental influences of mice with reduced BDNF function and support the important role of this neurotrophic factor in the developmental plasticity of brain circuits controlling anxiety.  相似文献   

13.
Semax is a synthetic peptide, which consists of the N-terminal adrenocorticotropic hormone fragment (4-7) (ACTH4-7) and C-terminal Pro-Gly-Pro peptide. Semax promotes neuron survival in hypoxia, increases selective attention and memory storage. It was shown that this synthetic peptide exerted a number of gene expressions, especially brain derived neurotrophic factor gene (Bdnf) and nerve growth factor gene (Ngf). Temporary dynamics of Bdnf and Ngf ex- pression in rat hippocampus and frontal cortex under Semax action (50 mg/kg, single intranasal administration) was studied in this work. It was shown that the studied gene expression levels changed significantly both in the hippocampus and the frontal cortex tissues 20 minutes after the peptide preparation application. The expression levels decreased in the hippocampus and increased in the frontal cortex. Forty minutes after Semax administration both gene expression levels returned to the level typical of control tissues. After that they increased significantly by 90 minutes after experiment start. Bdnf and Ngf expression levels decreased up to the control levels by 8 hours after medicine applying maximum gene expression levels were attained. Thus, Semax administration results in rapid, long-term, and specific activation of Bdnf and Ngf expression changes in different rat brain departments.  相似文献   

14.
In this paper, we studied differences in the density of N-methyl-D-aspartate (NMDA) receptor GluN2B subunits in the brains of low (LR) and high (HR) anxiety rats subjected to extinction trials and re-learning of a conditioned fear response, modeling a natural course of anxiety disorders. Classifications of animals as LR or HR was determined by fear-induced freezing responses in the contextual fear test. Increased basal concentrations of GluN2B subunits were observed in the amygdala of HR rats as compared to the unconditioned control group by Western blot analysis. Re-exposure of HR animals to the fear-conditioned context resulted in elevated concentrations of GluN2B subunits in the amygdala, hippocampus and the prefrontal cortex compared to LR rats as well as in the hippocampus and prefrontal cortex vs. the control group. In addition, it was shown that re-test of a conditioned fear increased the number of cells expressing GluN2B subunits in the basolateral amygdala, dentate gyrus of the hippocampus and secondary motor cortex (M2) in the HR group relative to the LR group. Together, these data suggest that animals that are more anxious have altered patterns of GluN2B subunit expression in the frontal cortex and limbic structures, which control emotional behaviour.  相似文献   

15.
16.
Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS) when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT), a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.  相似文献   

17.
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.  相似文献   

18.
Abstract: To assess the involvement of the serotonin receptor subtype 5-HT1B as terminal autoreceptor regulating 5-HT release in mice, we compared basal values and potassium-evoked changes of extracellular 5-HT levels obtained by in vivo microdialysis in two serotoninergic terminal projection areas of conscious wild-type mice with those measured in homozygous mutant mice lacking the gene encoding the 5-HT1B receptor. In the frontal cortex and ventral hippocampus, basal and K+-evoked 5-HT release did not differ between the two strains of mice studied. The infusion via reverse microdialysis of the selective 5-HT1B receptor agonist CP-93,129 (500 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −44%) and ventral hippocampus (by −32%) of wild-type mice but had no effect in mutants. In a similar manner, the mixed 5-HT1B-5-HT1D receptor agonist sumatriptan (800 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −46%) of wild-type mice but had no effect in mutants. These results demonstrated that 5-HT1B knockout mice are not as sensitive to full (CP-93,129) and mixed (sumatriptan) 5-HT1B receptor agonists as are wild-type mice. These data provide in vivo evidence that, in mice, 5-HT1B, but not 5-HT1D, autoreceptors inhibit 5-HT release at nerve terminals located in the frontal cortex and ventral hippocampus.  相似文献   

19.
20.
Neurotrophins regulate key function of nervous tissue cells. Analysis of neurotrophins mRNA expression is an appropriate tool to assess therapeutic efficiency of the anti-stroke drugs. We have analyzed the effect of synthetic peptide semax and its C-terminal Pro-Gly-Pro tripeptide upon mRNAs expression of neurotrophins Ngf, Bdrf, Nt-3 and their receptors TrkA, TrkB, TrkC, p75 in rat frontal lobes, hippocampus and cerebellum after bilateral common carotid artery occlusion. The animals were decapitated 30 min, 1, 2, 4, 8, 12, 24 h after the operation. The mRNA expression of neurotrophins and their receptors was assessed by relative quantification using real-time RT-PCR. Our showed that ischemia causes a significant decrease in gene expression in the hippocampus. Semax and PGP affected the expression of neurotrophins and their receptors predominantly in the frontal cortex and hippocampus of the ischemized animals. In the frontal cortex, Semax treatment resulted in a decrease of mRNA level of receptors, while PGP treatment increased the level of these mRNA. Maximal neuroprotective effect of both peptides has been observed in the hippocampus 12 h after occlusion. A decrease of gene expression of neurotrophins and their receptors caused by the occlusion was overcome by Semax and PGP. These results clarify the semax mechanism of and present certain features of mRNA's expression of neurotrophins and their receptors in experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号