首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes.  相似文献   

4.
5.
6.
7.
8.
9.
《Autophagy》2013,9(2):66-74
Autophagy (specifically macroautophagy) is an evolutionarily conserved catabolic process where the cytoplasmic contents of a cell are sequestered within double membrane vacuoles, called autophagosomes, and subsequently delivered to the lysosome for degradation. Autophagy can function as a survival mechanism in starving cells. At the same time, extensive autophagy is commonly observed in dying cells, leading to its classification as an alternative form of programmed cell death. The functional contribution of autophagy to cell death has been a subject of great controversy. However, several recent loss-of-function studies of autophagy (Atg) genes have begun to address the roles of autophagy in both cell death and survival. Here, we review the emerging evidence in favor of and against autophagic cell death, discuss the possible roles that autophagic degradation might play in dying cells, and identify salient issues for future investigation.  相似文献   

10.
In theory, the combination of mathematical modeling with experimental studies can be a powerful and compelling approach to understanding cell biology. In practice, choosing appropriate problems, identifying willing and able collaborators, and publishing the resulting research can be remarkably challenging. To provide perspective on the question of whether and when to combine modeling and experiments, a panel of experts at the 2010 ASCB Annual Meeting shared their personal experiences and advice on how to use modeling effectively.  相似文献   

11.
It is well known that some neurons tend to fire packets of action potentials followed by periods of quiescence (bursts) while others within the same stage of sensory processing fire in a tonic manner. However, the respective computational advantages of bursting and tonic neurons for encoding time varying signals largely remain a mystery. Weakly electric fish use cutaneous electroreceptors to convey information about sensory stimuli and it has been shown that some electroreceptors exhibit bursting dynamics while others do not. In this study, we compare the neural coding capabilities of tonically firing and bursting electroreceptor model neurons using information theoretic measures. We find that both bursting and tonically firing model neurons efficiently transmit information about the stimulus. However, the decoding mechanisms that must be used for each differ greatly: a non-linear decoder would be required to extract all the available information transmitted by the bursting model neuron whereas a linear one might suffice for the tonically firing model neuron. Further investigations using stimulus reconstruction techniques reveal that, unlike the tonically firing model neuron, the bursting model neuron does not encode the detailed time course of the stimulus. A novel measure of feature detection reveals that the bursting neuron signals certain stimulus features. Finally, we show that feature extraction and stimulus estimation are mutually exclusive computations occurring in bursting and tonically firing model neurons, respectively. Our results therefore suggest that stimulus estimation and feature extraction might be parallel computations in certain sensory systems rather than being sequential as has been previously proposed.  相似文献   

12.
13.
Silverman J  Doyle RE  Crispino C  Gerow L  Batchelder M  Dohm E 《Lab animal》2002,31(5):19-21; discussion 21
  相似文献   

14.
The ability to engineer proteins with increased thermostability will profoundly broaden their practical applications. Recent experimental results show that optimization of charge-charge interactions on the surface of proteins can be a useful strategy in the design of thermostable enzymes. Results also indicate a possibility that such optimized interactions provide structural determinants for enhanced stability of proteins from thermophilic organisms. In this article, the general strategy for design of thermostable proteins and perspectives for future studies are discussed.  相似文献   

15.
16.
17.
The lack of ordered structure in “natively unfolded” proteins raises a general question: Are there intrinsic properties of amino acid residues that are responsible for the absence of fixed structure at physiological conditions? In this article, we demonstrate that the competence of a protein to be folded or to be unfolded may be determined by the property of amino acid residues to form a sufficient number of contacts in a globular state. The expected average number of contacts per residue calculated from the amino acid sequence alone (using the average number of contacts for 20 amino acid residues in globular proteins) can be used as one of the simple indicators of natively unfolded proteins. The prediction accuracy for the sets of 80 folded and 90 natively unfolded proteins reaches 89% if the expected average number of contacts is used as a parameter and 83% in the case of hydrophobicity. An optimal set of artificial parameters for 20 amino acid residues obtained by Monte Carlo algorithm to maximally separate the sets of 90 natively unfolded and 80 folded proteins demonstrates the upper limit for prediction accuracy, which is 95%.  相似文献   

18.
Recent experimental reports have suggested that cortical networks can operate in regimes were sensory information is encoded by relatively small populations of spikes and their precise relative timing. Combined with the discovery of spike timing dependent plasticity, these findings have sparked growing interest in the capabilities of neurons to encode and decode spike timing based neural representations. To address these questions, a novel family of methodologically diverse supervised learning algorithms for spiking neuron models has been developed. These models have demonstrated the high capacity of simple neural architectures to operate also beyond the regime of the well established independent rate codes and to utilize theoretical advantages of spike timing as an additional coding dimension.  相似文献   

19.
20.
Levels of p21, a cyclin-dependent kinase (CDK) inhibitor, are controlled in part at the post-translational level by protein degradation. Although the signaling pathways leading to p21 degradation have not yet been fully elucidated, it is evident that p21 ubiquitination is an essential factor in its degradation. We discuss that, with the only notable exception of ornithine decarboxylase, ubiquitination appears to be a prerequisite for proteasomal degradation rather than an unnecessary byproduct of such proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号