共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes. 相似文献
6.
Eric J. Nestler 《PLoS biology》2016,14(3)
There has been increasing interest in the possibility that behavioral experience—in particular, exposure to stress—can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility—and the experimental evidence for and against the existence of such mechanisms—and outlines steps required for future investigations. 相似文献
7.
\"Epigenetics\" is currently defined as \"the inheritance of variation (-genetics) above and beyond (epi-) changes in the DNA sequence\". Despite the fact that histones are believed to carry important epigenetic information, little is known about the molecular mechanisms of the inheritance of histone-based epigenetic information, including histone modifications and histone variants. Here we review recent progress and discuss potential models for the mitotic inheritance of histone modifications-based epigenetic information. 相似文献
8.
《Biotechnology advances》2017,35(2):251-266
Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH2OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary bridge between them, thinking how the reported drawbacks of the TEMPO-mediated oxidation of cellulose are heading towards to the biomass valorisation, presenting why the apparently undesired side reactions could be turned into beneficial processes if they are correlated with the existing achievements of particular significance in the field of cellulose conversion into small organic compounds, aiming the general goal of pursuing for alternatives to replace the petroleum-based products in human life. 相似文献
9.
10.
11.
Avital Schurr 《Life sciences》1982,30(13):1059-1063
That the enzyme, monoamine oxidase (E.C. 1.4.3.4. amine: O2 oxidoreductase, MAO) exists in multiple forms was first suggested by Johnston (1) who studied the effects of the irreversible inhibitor clorgyline on MAO. It has been proposed that MAO can be classified into two types, A and B, according to their inhibitor sensitivity and substrate specificity. Type A MAO was found to be solely responsible for the deamination of 5-hydroxytryptamine (5-HT) and shows high sensitivity to clorgyline, while type B MAO metabolizes 2-phenethylamine (PEA) and benzylamine (BA) and is less sensitive to clorgyline. Subsequently, it was shown that type B MAO is highly sensitive to the irreversible inhibitor deprenyl (2).Recently, the “multiple forms” concept has been questioned (3–5) mainly because of increasing evidence which is contradictory to some earlier findings. As an alternative, another hypothesis was put forward insinuating that MAO is an enzyme with multiple binding sites but only one molecular entity (3,4,6,7). This account will focus on some experimental findings accumulated mainly since 1978 and which, although equivocal, strongly support the “one molecular entity” hypothesis of MAO. 相似文献
12.
The bootstrap: To smooth or not to smooth? 总被引:4,自引:0,他引:4
13.
Insects that undergo complete metamorphosis experience enormous changes in both morphology and lifestyle. The current study examines whether larval experience can persist through pupation into adulthood in Lepidoptera, and assesses two possible mechanisms that could underlie such behavior: exposure of emerging adults to chemicals from the larval environment, or associative learning transferred to adulthood via maintenance of intact synaptic connections. Fifth instar Manduca sexta caterpillars received an electrical shock associatively paired with a specific odor in order to create a conditioned odor aversion, and were assayed for learning in a Y choice apparatus as larvae and again as adult moths. We show that larvae learned to avoid the training odor, and that this aversion was still present in the adults. The adult aversion did not result from carryover of chemicals from the larval environment, as neither applying odorants to naïve pupae nor washing the pupae of trained caterpillars resulted in a change in behavior. In addition, we report that larvae trained at third instar still showed odor aversion after two molts, as fifth instars, but did not avoid the odor as adults, consistent with the idea that post-metamorphic recall involves regions of the brain that are not produced until later in larval development. The present study, the first to demonstrate conclusively that associative memory survives metamorphosis in Lepidoptera, provokes intriguing new questions about the organization and persistence of the central nervous system during metamorphosis. Our results have both ecological and evolutionary implications, as retention of memory through metamorphosis could influence host choice by polyphagous insects, shape habitat selection, and lead to eventual sympatric speciation. 相似文献
14.
15.
Learning and memory is a delicate process of acquiring, storing and reconsolidating the knowledge with a behavioral output, which is indispensable for animals to adapt to their living environment. Defects in learning and memory contribute to some psychiatric disorders such as schizophrenia, depression and Alzheimer’s disease, and are recently reported to be inheritable from the parental generation to their offspring. However, it is not clear currently what the mechanism is underlying the learning and memory inheritance due to the lack of animal models. In this perspective type of mini-review, we first briefly summarize the current understanding of the molecular basis, neural circuit and transgenerational inheritance of learning and memory. We then focus on discussing the possibility of using Drosophila as an animal model to study the transgenerational inheritance of learning and memory and propose potential strategies to achieve the goal. 相似文献
16.
Signals from the hypothalamus govern food intake and energy balance. A new study describes nesfatin-1, a hypothalamic and brainstem peptide whose expression decreases during fasting. Although central treatment with nesfatin-1 inhibited food intake and nesfatin-1 blockade increased food intake, the role and mechanism of nesfatin in energy balance remains unclear. 相似文献
17.
It is well known that some neurons tend to fire packets of action potentials followed by periods of quiescence (bursts) while others within the same stage of sensory processing fire in a tonic manner. However, the respective computational advantages of bursting and tonic neurons for encoding time varying signals largely remain a mystery. Weakly electric fish use cutaneous electroreceptors to convey information about sensory stimuli and it has been shown that some electroreceptors exhibit bursting dynamics while others do not. In this study, we compare the neural coding capabilities of tonically firing and bursting electroreceptor model neurons using information theoretic measures. We find that both bursting and tonically firing model neurons efficiently transmit information about the stimulus. However, the decoding mechanisms that must be used for each differ greatly: a non-linear decoder would be required to extract all the available information transmitted by the bursting model neuron whereas a linear one might suffice for the tonically firing model neuron. Further investigations using stimulus reconstruction techniques reveal that, unlike the tonically firing model neuron, the bursting model neuron does not encode the detailed time course of the stimulus. A novel measure of feature detection reveals that the bursting neuron signals certain stimulus features. Finally, we show that feature extraction and stimulus estimation are mutually exclusive computations occurring in bursting and tonically firing model neurons, respectively. Our results therefore suggest that stimulus estimation and feature extraction might be parallel computations in certain sensory systems rather than being sequential as has been previously proposed. 相似文献
18.
Fletcher DA 《Molecular biology of the cell》2011,22(7):909-910
In theory, the combination of mathematical modeling with experimental studies can be a powerful and compelling approach to understanding cell biology. In practice, choosing appropriate problems, identifying willing and able collaborators, and publishing the resulting research can be remarkably challenging. To provide perspective on the question of whether and when to combine modeling and experiments, a panel of experts at the 2010 ASCB Annual Meeting shared their personal experiences and advice on how to use modeling effectively. 相似文献
19.
20.