首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Megalin and the low-density lipoprotein (LDL) receptor-related protein (LRP) are two large members of the LDL receptor family that bind and endocytose multiple ligands. The molecular and cellular determinants that dictate the sorting behavior of these receptors in polarized epithelial cells are largely unknown. Megalin is found apically distributed, whereas the limited information on LRP indicates its polarity. We show here that in Madin-Darby canine kidney cells, both endogenous LRP and a minireceptor containing the fourth ligand-binding, transmembrane and LRP cytosolic domains were basolaterally sorted. In contrast, minireceptors that either lacked the cytoplasmic domain or had the tyrosine in the NPTY motif mutated to alanine showed a preferential apical distribution. In LLC-PK1 cells, endogenous megalin was found exclusively in the apical membrane. Studies were also done using chimeric proteins harboring the cytosolic tail of megalin, one with the fourth ligand-binding domain of LRP and the other two containing the green fluorescent protein as the ectodomain and transmembrane domains of either megalin or LRP. Findings from these experiments showed that the cytosolic domain of megalin is sufficient for apical sorting, and that the megalin transmembrane domain promotes association with lipid rafts. In conclusion, we show that LRP and megalin both contain sorting information in their cytosolic domains that directs opposite polarity, basolateral for LRP and apical for megalin. Additionally, we show that the NPTY motif in LRP is important for basolateral sorting and the megalin transmembrane domain directs association with lipid rafts .  相似文献   

2.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the expanding LDL receptor family, and is closely related to LRP. It was discovered as a putative tumor suppressor, and is frequently inactivated in human malignant tissues. However, the expression pattern of LRP1B in normal human tissues was unclear. In the present study, we analyzed LRP1B expression in normal mouse and human tissues. By using RT-PCR, we found that, while mouse LRP1B expression is mostly restricted to the brain, human LRP1B expression is more widespread with highest expression levels detected in the brain, adrenal gland, salivary gland, and testis. Although mouse LRP1B expresses in the forms of both full-length receptor tail and an alternatively spliced form lacking a 33-amino acid insert, human LRP1B is expressed exclusively in the form of full-length receptor tail. Finally, we found that, unlike mouse LRP1B, human LRP1B is cleaved by furin. Taken together, these data demonstrate that there are striking differences between LRP1B expression in mouse and human tissues. The broader expression pattern of LRP1B in human tissues suggests that this putative tumor suppressor may play roles in several types of human cancer.  相似文献   

3.
Monoclonal antibodies that bound to the external domain of the rabbit low density lipoprotein receptor-related protein (LRP) were taken into rabbit fibroblasts by receptor-mediated endocytosis. Uptake occurred in fibroblasts from Watanabe-heritable hyperlipidemic rabbits, which lack low density lipoprotein receptors, as well as in normal rabbit fibroblasts. The fate of the internalized antibodies differed, depending on the domain of LRP that was recognized. LRP is synthesized as a single polypeptide chain that is cleaved to form a heterodimer of two noncovalently bound proteins, 1) a 515-kDa subunit that contains the binding domain, and 2) an 85-kDa subunit that contains the membrane-spanning region and cytoplasmic tail. A monoclonal antibody directed against the 515-kDa subunit (anti-LRP 515) rapidly dissociated from LRP at pH 5.2. After uptake by cells this antibody dissociated from the receptor and was degraded in lysosomes. A second antibody directed against the external portion of the 85-kDa subunit (anti-LRP 85) failed to dissociate at acid pH. After uptake by cells this antibody was not degraded, but instead was released from the cells in an acid-precipitable form. When administered intravenously to rabbits, both 125I-labeled antibodies were rapidly cleared from the circulation, 75-95% of the uptake occurring in the liver. The anti-LRP 515 antibody was degraded and acid-soluble products appeared in the plasma. No significant acid-soluble products appeared when the anti-LRP-85 antibody was infused. We conclude that LRP can carry out receptor-mediated endocytosis and that its ligand-binding domain, like the similar domain of the low density lipoprotein receptor, undergoes an acid-dependent conformational change that ejects ligands within the endosome. We also conclude that in the body this endocytotic function is expressed primarily in the liver. Both of these conclusions lend support to the hypothesis that LRP may function in humans and animals as a receptor for apolipoprotein E-enriched lipoproteins, such as chylomicron remnants.  相似文献   

4.
The low-density Lipoprotein receptor-related protein (LRP) is a 4544-amino-acid membrane protein which closely resembles the LDL receptor in its arrangement of cysteine-rich motifs. Binding studies have suggested that one function of the molecule is as a receptor for ligands containing apolipoprotein E. We present here the sequence and structure of the promoter region of the LRP. These data show that the LRP contains no sterol regulatory element, and is not down-regulated by sterols like the LDL receptor. This lends further support to the identity of the LRP as a chylomicron remnant receptor.  相似文献   

5.
Apolipoprotein E (apoE), an apoprotein involved in lipid transport in both the plasma and within the brain, mediates the binding of lipoproteins to members of the low density lipoprotein (LDL) receptor family including the LDL receptor and the LDL receptor-related protein (LRP). ApoE/LRP interactions may be particularly important in brain where both are expressed at high levels, and polymorphisms in the apoE and LRP genes have been linked to AD. To date, only apoE-enriched lipoproteins have been shown to be LRP ligands. To investigate further whether other, more lipid-poor forms of apoE interact with LRP, we tested whether lipid-free apoE in the absence of lipoprotein particles interacts with its cell-surface receptors. No detectable lipid was found associated with bacterially expressed and purified apoE either prior to or following incubation with cells when analyzed by electrospray ionization mass spectrometry. We found that the degradation of lipid-poor (125)I-apoE was significantly higher in wild type as compared to LRP-deficient cells, and was inhibited by receptor-associated protein (RAP). In contrast, (125)I-apoE-enriched beta-VLDL was degraded by both LRP and the LDL receptor. When analyzed via a single cycle of endocytosis, (125)I-apoE was internalized prior to its subsequent intracellular degradation with kinetics typical of receptor-mediated endocytosis. Thus, we conclude that a very lipid-poor form of apoE can be catabolized via cell surface LRP, suggesting that the conformation of apoE necessary for recognition by LRP can be imposed by situations other than an apoE-enriched lipoprotein.  相似文献   

6.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

7.
We describe a cell surface protein that is abundant in liver and has close structural and biochemical similarities to the low density lipoprotein (LDL) receptor. The complete sequence of the protein containing 4544 amino acids is presented. From the sequence a remarkable resemblance to the LDL-receptor and epidermal growth factor (EGF) precursor is apparent. Three types of repeating sequence motifs entirely account for the extracellular domain of the molecule. These are arranged in a manner resembling four copies of the ligand binding and the EGF-precursor homologous region of the LDL-receptor. Following a proline-rich segment of 17 amino acids are found six consecutive repeats with close homology to EGF. A single membrane-spanning segment precedes a carboxy-terminal 'tail' of 100 amino acids. This contains two seven-amino acid sequences with striking homology to the cytoplasmic tail of the LDL-receptor in the region that contains the signal for clustering into coated pits. The mRNA for this protein is most abundant in liver, brain and lung. By using an antibody raised against a 13-amino acid peptide corresponding to the deduced amino acid sequence of the carboxy-terminus of the protein we have demonstrated its existence on the cell surface and its abundance in liver. Like the LDL-receptor this protein also strongly binds calcium, a cation absolutely required for binding of apolipoproteins B and E to their receptors. We propose that this LDL-receptor related protein (LRP) is a recycling lipoprotein receptor with possible growth-modulating effects.  相似文献   

8.
9.
SCUBE1 (signal peptide-CUB-EGF domain-containing protein 1) is a novel, secreted, cell surface glycoprotein expressed during early embryogenesis and found in platelet and endothelial cells. This protein is composed of an N-terminal signal peptide sequence followed by nine tandemly arranged epidermal growth factor (EGF)-like repeats, a spacer region, three cysteine-rich repeat motifs, and one CUB domain at the C terminus. However, little is known about its domain and biological function. Here, we generated a comprehensive panel of domain deletion constructs and a new genetic mouse model with targeted disruption of Scube1 (Scube1(Delta cub/Delta cub)) to investigate the domain function and biological significance. A number of cell-based assays were utilized to define the critical role of the spacer region for membrane association and establish that the EGF-like repeats 7-9 are sufficient for the formation of SCUBE1-mediated homophilic adhesions in a calcium-dependent fashion. Biochemical and molecular analyses showed that the C-terminal cysteine-rich motifs and CUB domain could directly bind and antagonize the bone morphogenetic protein activity. Furthermore, genetic ablation of this C-terminal region resulted in brain malformation in the Scube1(Delta cub/Delta cub) embryos. Together, our results support the dual roles of SCUBE1 on brain morphogenesis and cell-cell adhesions through its distinct domain function.  相似文献   

10.
The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.  相似文献   

11.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

12.
The low-density lipoprotein (LDL) receptor-related protein (LRP) is a multiligand endocytic receptor and a member of the LDL receptor family. Here we show that sorting nexin 17 (Snx 17) is part of the cellular sorting machinery that regulates cell surface levels of LRP by promoting its recycling. While the phox (PX) domain of Snx 17 interacts with phosphatidylinositol-3-phosphate for membrane association, the FERM domain and the carboxyl-terminal region participate in LRP binding. Immunoelectron microscopy shows that the membrane-bound fraction of Snx 17 is localized to the limiting membrane and recycling tubules of early endosomes. The NPxY motif, proximal to the plasma membrane in the LRP cytoplasmic tail, is identified as the Snx 17-binding motif. Functional mutation of this motif did not interfere with LRP endocytosis, but decreased LRP recycling from endosomes, resulting in increased lysosomal degradation. Similar effects are found after knockdown of endogenous Snx 17 expression by short interfering RNA. We conclude that Snx 17 binds to a motif in the LRP tail distinct from the endocytosis signals and promotes LRP sorting to the recycling pathway in the early endosomes.  相似文献   

13.
Battle MA  Maher VM  McCormick JJ 《Biochemistry》2003,42(24):7270-7282
In 1997, McCormick and co-workers identified a novel putative tumor suppressor gene, designated ST7, encoding a unique protein with transmembrane receptor characteristics [Qing et al. (1999) Oncogene 18, 335-342]. Using degenerate primers corresponding to the highly conserved region of the ligand-binding domains of members of the low-density lipoprotein receptor (LDLR) superfamily, Ishii et al. [Genomics (1998) 51, 132-135] discovered a low-density lipoprotein receptor-related protein (LRP) that closely resembles ST7. Later, another LRP closely resembling ST7 and LRP3 was found (murine LRP9) [Sugiyama et al. (2000) Biochemistry 39, 15817-15825]. These results strongly suggested that ST7 was also a novel member of the low-density lipoprotein receptor superfamily. Proteins of this superfamily have been shown to function in endocytosis and/or signal transduction. To evaluate the relationship of ST7 to the LDLR superfamily proteins and to determine whether ST7 may function in endocytosis and/or signal transduction, we used proteomic tools to analyze the functional motifs present in the protein. Our results indicate that ST7 is a member of a subfamily of the LDLR superfamily and that its cytoplasmic domain contains several motifs implicated in endocytosis and signal transduction. Use of the yeast two-hybrid system to identify proteins that associate with ST7's cytoplasmic domain revealed that this domain interacts with three proteins involved in signal transduction and/or endocytosis, viz., receptor for activated protein C kinase 1 (RACK1), muscle integrin binding protein (MIBP), and SMAD anchor for receptor activation (SARA), suggesting that ST7, like other proteins in the LDLR superfamily, functions in these two pathways. Clearly, ST7 is an LRP, and therefore, it should now be referred to as LRP12.  相似文献   

14.
The low density lipoprotein receptor-related protein-deleted in tumor (LRP1B, initially referred to as LRP-DIT) was cloned and characterized as a candidate tumor suppressor. It is a new member of the low density lipoprotein receptor gene family. Its overall domain structure and large size (approximately 600 kDa) are similar to LRP and suggest that it is a multifunctional cell surface receptor. Herein, we characterize a series of ligands for the receptor using cell lines that stably express it as a domain IV minireceptor (mLRP1B4). Ligands of LRP including receptor-associated protein, urokinase plasminogen activator, tissue-type plasminogen activator, and plasminogen activator inhibitor type-1 each demonstrate binding, internalization, and degradation via mLRP1B4. Interestingly, the kinetics of ligand endocytosis is distinctly different from that of LRP, with LRP1B exhibiting a markedly diminished internalization rate. In addition, tissue expression analysis reveals that the LRP1B gene is expressed in brain, thyroid, and salivary gland. These studies thus extend the physiological roles of members of the LDL receptor family.  相似文献   

15.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is predominantly expressed in liver and regulates cholesterol metabolism by down regulating liver LDL receptor (LDLR) proteins. Here we report transgenic overexpression of human PCSK9 in kidney increased plasma levels of PCSK9 and subsequently led to a dramatic reduction in liver LDLR proteins. The regulation of LDLR by PCSK9 displayed tissue specificity, with liver being the most responsive tissue. Even though the PCSK9 transgene was highly expressed in kidney, LDLR proteins were suppressed to a lower extent in this tissue than in liver. Adrenal LDLR proteins were not regulated by elevated plasma PCSK9. hPCSK9 transgene expression and subsequent reduction of liver LDLR led to increases in plasma total cholesterol, LDL cholesterol, and ApoB, which were further increased by a high-fat, high-cholesterol diet. We also observed that the size distribution of hPCSK9 in transgenic mouse plasma was heterogeneous. In chow-fed mice, the majority of PCSK9 proteins were in free forms; however, feeding a high-fat, high-cholesterol diet resulted in a shift of hPCSK9 distribution toward larger complexes. PCSK9 distribution in human plasma also exhibited heterogeneity and individual variability in the percentage of PCSK9 in free form and in large complexes. We provide strong evidence to support that human PCSK9 proteins secreted from extrahepatic tissue are able to promote LDLR degradation in liver and increase plasma LDL. Our data also suggest that LDLR protein regulation by PCSK9 has tissue specificity, with liver being the most responsive tissue.  相似文献   

16.
《Gene》1998,216(1):103-111
A gene encoding a novel transmembrane protein was identified by DNA sequence analysis within the insulin-dependent diabetes mellitus (IDDM) locus IDDM4 on chromosome 11q13. Based on its chromosomal position, this gene is a candidate for conferring susceptibility to diabetes. The gene, termed low-density lipoprotein receptor related protein 5 (LRP5), encodes a protein of 1615 amino acids that contains conserved modules which are characteristic of the low-density lipoprotein (LDL) receptor family. These modules include a putative signal peptide for protein export, four epidermal growth factor (EGF) repeats with associated spacer domains, three LDL-receptor (LDLR) repeats, a single transmembrane spanning domain, and a cytoplasmic domain. The encoded protein has a unique organization of EGF and LDLR repeats; therefore, LRP5 likely represents a new category of the LDLR family. Both human and mouse LRP5 cDNAs have been isolated and the encoded mature proteins are 95% identical, indicating a high degree of evolutionary conservation.  相似文献   

17.
The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.  相似文献   

18.
We isolated a mouse cDNA encoding a protein that contains a BEACH domain, 5 WD40 repeats and a FYVE domain, which we designated as BWF1. The mRNA is approximately 10 kb in size and encodes a protein consisting of 3508 amino acids with a predicted molecular weight of 385 kDa. BWF1 has 45% homology with the Drosophila protein, blue cheese (BCHS). The BWF1 gene consists of 67 exons, which span 270 kb of genomic sequence, and has been mapped to mouse chromosome 5. Northern blot analysis revealed that it was strongly expressed in the liver, moderately in the kidney and testis, and weakly in the brain of adult mice. During the development of the mouse brain, BWF1 mRNA was abundant on embryonic day (E) 14-16; after birth, the level of BWF1 mRNA expression decreased markedly to reach the adult level at postnatal day 3. In situ hybridization analysis revealed that the expressed BWF1 mRNA was restricted to the marginal region both in E14 and E16 embryonic brain, but became diffuse after birth. Confocal microscopy studies of the epitope-tagged BWF1 protein showed that the protein was a cytoplasmic one.  相似文献   

19.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in cholesterol homeostasis through enhanced degradation of the LDL receptor (LDLR) in liver. As novel inhibitors/silencers of PCSK9 are now being tested in clinical trials to treat hypercholesterolemia, it is crucial to define the physiological consequences of the lack of PCSK9 in various organs. LDLR regulation by PCSK9 has not been extensively described during mouse brain development and injury. Herein, we show that PCSK9 and LDLR are co-expressed in mouse brain during development and at adulthood. Although the protein levels of LDLR and apolipoprotein E (apoE) in the adult brain of Pcsk9(-/-) mice are similar to those of wild-type (WT) mice, LDLR levels increased and were accompanied by a reduction of apoE levels during development. This suggests that the upregulation of LDLR protein levels in Pcsk9(-/-) mice enhances apoE degradation. Upon ischemic stroke, PCSK9 was expressed in the dentate gyrus between 24 h and 72 h following brain reperfusion. Although mouse behavior and lesion volume were similar, LDLR protein levels dropped ~2-fold less in the Pcsk9(-/-)-lesioned hippocampus, without affecting apoE levels and neurogenesis. Thus, PCSK9 downregulates LDLR levels during brain development and following transient ischemic stroke in adult mice.  相似文献   

20.
通过消减差异筛选法寻找小鼠胚胎发育过程中在脑中特异表达的基因 .克隆得到的脑特异表达新基因 2 (brainspecificgene 2 ,简称Bsg2 )长 36 91bp ,通过生物信息学方法预测其编码一个含713个氨基酸的锌指蛋白 .此蛋白N端有一个BTB(BR C ,ttkandbab)结构域 ,C端有 9个连续的C2H2锌指结构 .该基因定位在小鼠 12号染色体上 ,包含 1个内含子和 2个外显子 .应用生物信息学和RT PCR方法分别检验该基因在小鼠各组织中的表达 .结果表明 ,Bsg2基因在小鼠胚胎及成体的各组织中普遍表达 ,在脾、肾、睾丸、肠、子宫和脑的表达水平较强 .利用整体 (wholemount)原位杂交研究其时空表达模式 .结果显示 ,Bsg2在早期的小鼠胚胎和不同时期鸡胚的头部均特异表达 ,在11d鼠胚的肢芽里也有较强的表达 .Bsg2基因的结构和表达特征预示它编码 1个具有DNA结合功能的转录调控因子 ,同时揭示它在脑的发育和器官形成过程中发挥着重要作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号