首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (Vigna unguiculata L. Walp. cv Vita 3) formed [15N]xanthine from 15N2 at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.7.99.2) activity. Negligible 15N-labeling of asparagine from 15N2 was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.  相似文献   

2.
De Novo Purine Biosynthesis in Intact Cells of Cucurbita pepo   总被引:1,自引:1,他引:0       下载免费PDF全文
Lovatt CJ 《Plant physiology》1983,73(3):766-772
The capacity of intact cells of roots excised from summer squash plants (Cucurbita pepo L. cv Early Prolific Straightneck) to synthesize purine nucleotides de novo was investigated. Evidence that purine nucleotides are synthesized de novo included: (a) demonstration of the incorporation of [1-14C]glycine, [2-14C]glycine, NaH14CO3, and H14COONa into total adenine nucleotides; (b) observation that the addition of azaserine or aminopterin, known inhibitors of de novo purine synthesis in other organisms, blocked the incorporation of these precursors into adenine nucleotides; and (c) demonstration that the purine ring synthesized from these precursors was labeled in a manner consistent with the pathway for de novo purine biosynthesis found in microorganisms and animal tissues. Under optimal conditions, the activity of this pathway in roots excised from 2-day-old squash plants was 244 ± 13 nanomoles (mean ± standard error, n = 17) NaH14CO3 incorporated into ∑Ade (the sum of the adenine nucleotides, nucleoside and free base) per gram tissue during the 3-hour incubation period.

The possible occurrence of alternative enzymic reactions for the first steps of de novo purine biosynthesis was also investigated. No conclusive evidence was obtained to support the operation of alternative enzymic reactions in the intact cell of C. pepo.

  相似文献   

3.
Some studies on the effects of xanthine oxidase inhibitor allopurinol [4-hydroxypyrazolo(3,4-d)pyrimidine] on allantoin metabolism of soybean plants (Glycine max cv. Tamanishiki) are reported. Soybean seedlings, aseptically germinated for 96 hours on agar containing 1 millimolar allopurinol, contained only slight amounts of allantoin, allantoic acid, and urea as compared with controls. Analysis of purines and pyrimidines of the allopurinol-treated seedlings showed marked accumulation of xanthine both in the cotyledons and seedling axes. No hypoxanthine accumulation was found. Xanthine accumulation due to allopurinol treatment was relatively low after the cotyledons had fallen. For nodulated plants, allopurinol caused a significant drop in allantoin (+allantoic acid) in the stems and nodules, accompanied by a striking accumulation of xanthine in the nodules. The xanthine concentration in the nodules far exceeded that in the germinated seedlings. Allopurinol at a concentration of 50 micromolar strongly inhibited xanthine oxidase prepared from soybean nodules.

The results suggested that the main pathway of allantoin formation in soybean plants was through purine decomposition, via xanthine-uric acid. It was specially noted that a very active purine-decomposing system existed in soybean nodules.

  相似文献   

4.
Rabe E  Lovatt CJ 《Plant physiology》1986,81(3):774-779
The accumulation of arginine in leaves of four citrus rootstock cultivars during P deficiency has been demonstrated to be due to increased de novo synthesis rather than decreased catabolism or increased protein degradation (E Rabe, CJ Lovatt, 1984, Plant Physiol 76: 747-752). In this report, we provide evidence (a) that the increased activity of the arginine biosynthetic pathway observed for citrus rootstocks grown under P-deficient conditions for 7 months is due to an increase in the concentration of ammonia in leaves of P-deficient plants and (b) that ammonia accumulation and removal through arginine systhesis are early responses to phosphorus deficiency for both a woody perennial, rough lemon (Citrus limon), and an herbaceous annual, summer squash (Cucurbita pepo). Transferring 5-day-old squash plants to a phosphorus-deficient nutrient solution for only 10 days resulted in a 2-fold increase in the concentration of nitrate in the youngest fully expanded leaves (YFE). Concomitantly, the specific activity of nitrate reductase doubled and the ammonia content of P-deficient YFE leaves increased to a concentration significantly greater that of leaves from healthy control plants (P < 0.05). Consistent with increased availability of ammonia, the incorporation of NaH14CO3 into arginine plus urea doubled during phosphorus deficiency and arginine accumulated. Despite the accumulation of nitrate and ammonia in YFE leaves during phosphorus deficiency, the total nitrogen content of these leaves was less than that of the healthy control plants. Similar results were obtained for rough lemon. Nitrate content of the YFE leaves increased 1.5- and 3.0-fold in plants deprived of phosphorus for 6 and 12 weeks, respectively. Ammonia content of the leaves increased as P deficiency progressed to 1.4 ± 0.08 mg (± se, n = 4) per gram dry weight, a level 1.8-fold greater than that of the P-sufficient control plants. During P deficiency de novo arginine biosynthesis in rough lemon increased 10-fold. Immersing the petiole of YFE leaves from P-sufficient squash and rough lemon plants in 50 millimolar NH4+ for 3 hours resulted in the accumulation of ammonia in the leaves, and a 4-fold increase in the incorporation of NaH14CO3 into arginine plus urea. Taken together, these results provide strong evidence that the accumulation of nitrate and ammonia in leaves is an early response of both woody and herbaceous plants to P deprivation. The data are consistent with the hypothesis that increased de novo arginine biosynthesis in leaves during P deficiency is in response to ammonia content of the leaves.  相似文献   

5.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

6.
Rabe E  Lovatt CJ 《Plant physiology》1984,76(3):747-752
Young, fully expanded leaves from 7-month-old P-deficient citrus rootstock seedlings had levels of nonprotein arginine that were 10- to 50-fold greater than those from P-sufficient control plants. Arginine content of the protein fraction increased 2- to 4-fold in P-deficient leaves. Total arginine content, which averaged 72 ± 6 micromoles per gram dry weight of P-sufficient leaf tissue (mean ± se, n = the four rootstocks) was 207, 308, 241, and 178 micromoles in P-deficient leaves from Citrus limon cv rough lemon, Poncirus trifoliata × C. sinensis cv Carrizo citrange and cv Troyer citrange, and P. trifoliata cv Australian trifoliate orange, respectively. For each rootstock, the accumulation of arginine paralleled an increase in the activity of the pathway for the de novo biosynthesis of arginine. The ratio of the nanomoles NaH14CO3 incorporated into the combined pool of arginine plus urea per gram fresh weight intact leaf tissue during a 3-hour labeling period for P-deficient to P-sufficient plants was 91:34, 49:11, 35:11, and 52:41, respectively. When P-deficient plants were supplied with P, incorporation of NaH14CO3 into arginine plus urea was reduced to the level observed for the P-sufficient control plants of the same age and arginine ceased to accumulate. Arginase and arginine decarboxylase activity were either unaffected or slightly increased during phosphorus deficiency. Taken together, these results provide strong evidence that arginine accumulation during phosphorus deficiency is due to increased activity of the de novo arginine biosynthetic pathway.  相似文献   

7.
The metabolism of oligodendrocytes has been studied using cultures of oligodendrocyte-enriched glial cells isolated from cerebra of 5–8-day old rats. Cultures containing 60–80% oligodendrocytes were incubated for 16h with [3-14C]acetoacetate, d-[3-14C]3-hydroxybutyrate, [U-14C]glucose, l-[U-14C]glutamine and [1-14C]pyruvate or [2-14C]pyruvate in the presence or absence of other oxidizable substrates. Labelled CO2 was collected as an index of oxidative metabolism and the incorporation of label into total lipids, fatty acids and cholesterol was used as an index of the de novo synthesis of lipids. Glucose, acetoacetate, D-3-hydroxybutyrate, pyruvate and l-lactate were measured to determine substrate utilization and product formation under various conditions. Our results indicate that glucose is rapidly converted to lactate and is a relatively poor substrate for oxidative metabolism and lipid synthesis. Ketone bodies were used as an energy source and as precursors for the synthesis of fatty acids and cholesterol. Preferential incorporation of acetoacetate into cholesterol was not observed. Exogenous pyruvate was incorporated into both the glycerol skeleton of complex lipids and into cholesterol and fatty acids. l-Glutamine appeared to be an important substrate for the energy metabolism of these cells.  相似文献   

8.
Xanthosine is a catabolite of purine nucleotides. Our studies using excised tissues of various plant species indicate that xanthosine salvage is negligible and that xanthosine is catabolised predominantly via xanthine. A recent report using intact Arabidopsis thaliana seedlings (Riegler et al., 2011. New Phytol. 191, 349–359) showed that significant amounts of xanthosine were utilised for RNA synthesis. We report here similar, more detailed 14C-feeding experiments of xanthosine and xanthine using intact mungbean seedlings. Less than 3% of radioactivity from [8-14C]xanthosine and 1% from [8-14C]xanthine was incorporated into the RNA fraction; the rest of the radioactivity was incorporated into purine catabolites, including ureides, urea and CO2. Allopurinol, which is a xanthine oxidoreductase inhibitor, markedly inhibited purine catabolism, and radioactivity from these two precursors was retained in xanthine. Even then, no significant salvage of xanthosine and xanthine was observed. Rapid catabolism and slow salvage of xanthosine and xanthine appear to be inherent properties of many plant species.  相似文献   

9.
The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined at various times after phloem-girdling and exposure of nodules to Ar:O2. Phloemgirdling was effected 20 hours and exposure to Ar:O2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O2 decreased nodule CO2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14CO2. In contrast to nodules, roots exported very little radioactivity, and most of the 14C was exported as organic acids. The nonphotosynthetic CO2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO2 assimilation. Nodules fixed CO2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated root system CO2 fixation. The results of this study showed that exposure of nodules to Ar:O2 reduced nodule-specific respiration and nitrogenase activity by similar amounts, and that phloem-girdling significantly reduced nodule CO2 fixation, nitrogenase activity, nodule-specific respiration, and transport of 14C photoassimilate to nodules. These results indicate that nodule CO2 fixation in alfalfa is associated with N assimilation.  相似文献   

10.
The ureides, allantoin and allantoic acid, are the major nitrogenous substances transported within the xylem of N2-fixing soybeans (Glycine max L. Merr. cv Amsoy 71). The ureides accumulated in the cotyledons, roots and shoots of soybean seedlings inoculated with Rhizobium or grown in the presence of 10 millimolar nitrate. The patterns of activity for uricase and allantoinase, enzymes involved in ureide synthesis, were positively correlated with the accumulation of ureides in the roots and cotyledons. Allopurinol and azaserine inhibited ureide production in 3-day-old cotyledons while no inhibition was observed in the roots. Incubation of 4-day-old seedlings with [14C]serine indicated that in the cotyledons ureides arose via de novo synthesis of purines. The source of ureides in both 3- and 4-day-old roots was probably the cotyledons. The inhibition of ureide accumulation by allopurinol but not azaserine in 8-day-old cotyledons suggested that ureides in these older cotyledons arose via nucleotide breakdown. Incubation of 8-day-old plants with [14C]serine suggested that the roots had acquired the capability to synthesize ureides via de novo synthesis of purines. These data indicate that both de novo purine synthesis and nucleotide breakdown are involved in the production of ureides in young soybean seedlings.  相似文献   

11.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

12.
The chlorophyll-based specific activity of cytochrome oxidase and three exclusively mitochondrial enzymes of the tricarboxylic acid cycle showed little variation between leaves of C3 and C4 plants or between mesophyll and bundle sheath cells of Atriplex spongiosa and Sorghum bicolor. However, a large, light-dependent transfer of label from intermediates of the tricarboxylic acid cycle to photosynthetic products was a feature of leaves of C4 plants. This light-dependent transfer of label was barely detectable in leaves of C3 plants and in leaves of F1 and F3 hybrids of Atriplex rosea (C4) and Atriplex patula spp hastata (C3). The light-dependent transfer of label to photosynthetic products in leaves of C4 plants was inhibited by the tricarboxylic acid cycle inhibitors malonate and fluoroacetate. The requirement for continued tricarboxylic acid cycle activity was also indicated in experiments with specifically labeled succinate-14C. These experiments, together with the distribution of 14C in glucose prepared from sucrose-14C formed during the metabolism of succinate-2,3-14C, confirmed that the photosynthetic metabolism of malate and aspartate derived from the tricarboxylic acid cycle, and not the refixation of respiratory CO2, was the main path of carbon from the cycle to photosynthesis.  相似文献   

13.
Leishmania mexicana mexicana promastigotes, axenic amastigotes, and amastigotes derived from Vero cells were examined for de novo purine synthesis and mechanisms of purine salvage. Both promastigotes and axenic amastigotes were incapable of de novo purine synthesis, as shown by the lack of [14C]formate and [14C]glycine incorporation into purine nucleotide pools. However, the ready incorporation of [14C]hypoxanthine, [14C]adenine, and [14C]guanine suggested that purine salvage pathways were operating. In addition, a significant percentage (?60%) of the total label from these purine precursors was associated with adenylate nucleotides. Nucleotide pool levels of axenic amastigotes were consistently greater but the specific activities were less than those of promastigotes, suggesting a slower rate of purine metabolism in the axenic amastigote form. Similar results were obtained from amastigotes isolated from infected Vero cells.  相似文献   

14.
This study focuses on the activity of the pentose-phosphate pathway and its relationship to de novo synthesis of fatty acids and cholesterol in oligodendrocyte-enriched glial cell cultures derived from 1-week old rat brain. The proportion of glucose that was metabolized along the pentose-phosphate pathway was estimated by measuring 14CO2 production from [1-14C]-, [2-14C]- and [6-14C]glucose, the utilization of glucose and the production of lactate. Incorporation of 14C from [14C]glucose and from [3-14C]acetoacetate into lipids was analysed. The pentose- phosphate pathway produced much more CO2 from glucose than the Krebs cycle, although it accounted for only a small part of the consumption of glucose (< 3%). The higher 14CO2 production from [2-14C]glucose than from [6-14C]glucose indicated that recycling of the products of the pentose-phosphate pathway takes place in these cells.Gradual inhibition of the pathway with increasing concentrations of 6-aminonicotinamide resulted in a parallel inhibition of the conversion of acetoacetate and of glucose into fatty acids and into cholesterol. Glycolysis was also strongly inhibited in the presence of 6-aminonicotinamide whereas the activity of the Krebs cycle was not affected.These results suggest that de novo synthesis of fatty acids and cholesterol by oligodendrocytes of neonatal rats is closely geared to the activity of the pentose-phosphate pathway in these cells.  相似文献   

15.
Woo KC 《Plant physiology》1981,67(6):1156-1160
The effect of O2 and pH on the in vitro synthesis of 14C-labeled ureides from [8-14C]hypoxanthine in a cell-free system from cowpea nodules was investigated. Under conditions which suppressed uricase (EC 1.7.3.3) activity, namely low O2 concentrations and low pH, ureide synthesis was inhibited and the 14C label incorporated into uric acid was increased. Conversely, conditions which increased uricase activity, namely high O2 concentrations and high pH, also stimulated ureide synthesis, and the 14C label was incorporated principally into allantoin. The overall response of the system to O2 concentration and pH indicated that the per cent distribution of total 14C label incorporated into uric acid was inversely related to that into allantoin. In the present study there was evidence that uricase (EC 1.7.3.3) controlled the in vitro rate of ureide synthesis in the cell-free system. Adenine and guanine inhibited xanthine dehydrogenase (EC 1.2.1.37) and as a consequence ureide synthesis from [8-14C]hypoxanthine was also inhibited.  相似文献   

16.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

17.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

18.
Photosynthesis experiments with 14CO2 established that of 16 Droseraceae species tested Drosophylum lusitanicum incorporated the highest amount of label into plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone). Tyrosine-[β-14C] fed to Drosophyllum was shown to label plumbagin efficiently (20% incorporation). Extensive chemical degradation of the labeled naphthoquinone showed, however, that the incorporation of tyrosine was indirect, the label being distributed throughout the molecule. It was established that plumbagin and the closely related 7-methyljuglone are biosynthesized via the acetate-polymalonate pathway. Tyrosine is broken down to acetate in this tissue via the homogentisate pathway, which was demonstrated by feeding and incorporation of label into plumbagin of intermediates such as homogentisate-[14C], maleyl- and fumarylacetoacetate-[14C]. Simultaneous application of tyrosine-[β-14C] and α,α′-bipyridyl, an inhibitor of the homogentisate oxigenase, led to an accumulation of homogentisate-[14C] within the tissue. The degradation of tyrosine to acetate by Drosophyllum is not due to epiphytic bacteria since ring cleavage of tyrosine and formation of plumbagin from breakdown products occurred both within sterile grown plants and sterile cell suspension cultures. In tissue kept in darkness, plumbagin undergoes a slow turnover with a half life of about 400 hr.  相似文献   

19.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

20.
The distribution of assimilates of 14CO2 in ethanol soluble and insoluble fractions was measured at 20-day intervals from 45–135 days after sowing (DAS) in chickpea (Cicer arietinum) grown at two moisture levels. The contribution of pre-flowering assimilates to pods, although very low, was higher under the stress conditions. At the time of harvest, the recovery of 14C in pods was 0.4 and 0.9% of the total 14C fed 45 DAS in soluble and 2.5 and 5.1% in insoluble fractions in control and stressed plants, respectively. The %14C received by nodules continuously decreased with increasing age of plants. Stressed plants diverted more 14C to nodules, compared to control, during vegetative and flowering stages. During active seed filling, stressed plants diverted more 14C to reproductive parts and less to nodules, compared to control. Significant amounts of 14C were retgined by the stem and leaves during the seed-filling period and it appears that there is scope for the remobilisation of pre-flowering, as well as post-flowering assimilates for seed-filling of chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号