首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures (“chromatophores”) were obtained by treating spheroplast membrane vesicles by French press or sonication.The membrane structures with either sidedness showed the same light-induced change of the “red shift” type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, “blue shift” in the former and “red shift” in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

2.
The responses of oxonol dyes to single and multiple single turnovers of the photosynthetic apparatus of photosynthetic bacteria have been studied, and compared with the responses of the endogenous carotenoid pigments. The absorbance changes of the oxonols can be conveniently measured at 587 nm, because this is an isosbestic point in the ‘light-minus-dark’ difference spectrum of the chromatophores.The oxonols appear to respond to the light-induced ‘energization’ by shifting their absorption maxima. In the presence of K+, valinomycin abolished and nigericin enhanced such shifts, suggesting that the dyes respond to the light-induced membrane potential. Since the dyes are anions at neutral pH values, they probably distribute across the membrane in accordance with the potential, which is positive inside the chromatophores. The accumulation of dye, which is indicated by a decrease in the carotenoid bandshift, poises the dye-membrane equilibrium in favor of increased dye binding and this might be the cause of the spectral shift.The dye response has an apparent second-order rate constant of approx. 2 · 106 M?1 · s?1 and so is always slower than the carotenoid bandshift. Thus the dyes cannot be used to monitor membrane potential on submillisecond timescales. Nevertheless, on a timescale of seconds the logarithm of the absorbance change at 587 nm is linear with respect to the membrane potential calibrated with the carotenoid bandshift. This suggests that under appropriate conditions the dyes can be used with confidence as indicators of membrane potential in energy-transducing membranes that do not posses intrinsic probes of potential.  相似文献   

3.
In Chromatium chromatophores, the response of part of the carotenoid complement to a light-induced membrane potential is a shift to the blue of its absorption spectrum, as indicated by the characteristics of the light-minus-dark difference spectrum. The spectrum in the dark of the population of carotenoid which responds to a light-induced membrane potential is located at least 1–2 nm to the red in comparison to the total carotenoid absorption. The results indicate that the proposed permanent electric field affecting the responding population has a polarity with respect to the chromatophore membrane opposite to that in Rhodopseudomonas sphaeroides chromatophores. The carotenoid absorption change interferes seriously with measurements of cytochrome c-555 redox changes at its α band.  相似文献   

4.
Membrane vesicles prepared from Halobacterium halobium extrude protons during illumination, and a pH difference (inside alkaline) and an electrical potential (inside negative) develop. The sizes of these gradients and their relative magnitudes are dependent on a complex interaction among the proton-pumping activity of bacteriorhodopsin, Na+ extrusion through an antiport system, and the ability of K+ and Cl? to act as counterions to the electrogenic movement of H+. The net result of these variable effects is that the electrical potential is relatively independent of external pH, whereas the pH difference tends toward zero when the pH is increased to 7.5–8. Although the light-induced pH difference is greater in KCl than in NaCl, and the electrical potential smaller, this is not caused by a high permeability of the vesicle membranes to K+. The vesicle membrane is poorly permeable to K+, as shown by: lack of a K+ diffusion potential in the absence of valinomycin, light-induced electrical potentials which are in excess of the chemical potential difference for K+, and direct measurements of the slow rate of K+ influx during illumination. The finding that the rate of K+ uptake is a linear function of external K+ concentration between 0 and 1 m is inconsistent with the existence of a specific K+ permeation mechanism in these vesicles. Since at external K+ concentrations < 1.4 m the extrusion of Na+ during illumination proceeds much more rapidly than K+ influx, it must be concluded that the vesicles also lose Cl? and water. Measurements of light-scattering changes confirm that under these conditions the vesicles collapse. The light-induced collapse is diminished only when the inward movement of K+ is increased, either by increasing the external K+ concentration or by adding valinomycin.  相似文献   

5.
1. When cytochrome c2 is available for oxidation by the photosynthetic reaction centre, the decay of the carotenoid absorption band shift generated by a short flash excitation of Rhodopseudomonas capsulata chromatophores is very slow (half-time approximately 10 s). Otherwise the decay is fast (half-time approximately 1 s in the absence and 0.05 s in the presence of 1,10-ortho-phenanthroline) and coincides with the photosynthetic back reaction.2. In each of these situations the carotenoid shift decay, but not electron transport, may be accelerated by ioniophores. The ionophore concentration dependence suggests that in each case the carotenoid response is due to a delocalised membrane potential which may be dissipated either by the electronic back reaction or by electrophoretic ion flux.3. At high redox potentials, where cytochrome c2 is unavailable for photo-oxidation, electron transport is believed to proceed only across part of the membrane dielectric. Under such conditions it is shown that the driving force for carbonyl cyanide trifluoromethoxyphenyl hydrazone-mediated H+ efflux is nevertheless decreased by valinomycin/K+; demonstrating that the [BChl]2 → Q electron transfer generates a delocalised membrane potential.  相似文献   

6.
N.P.J. Cotton  J.B. Jackson 《BBA》1982,679(1):138-145
The kinetics of carotenoid absorption changes have been measured in intact cells of Rhodopseudomonas capsulata after short flash excitation. The observed changes were consistent with the thesis that they indicate the development and dissipation of membrane potential. In the generation of the absorption changes in anaerobic cells, fast (complete in 0.5 ms) and slow (half-time 3 ms) components can be distinguished. The slow component corresponds kinetically to the rate of cytochrome c re-reduction and is similarly antimycin sensitive. These data are similar to those observed in isolated chromatophores which have been artifically poised with redox mediators. In aerobic intact cells the kinetic profile is altered, mainly because the decay of the carotenoid change is much faster. Inhibition of respiration with KCN leads to flash-induced changes similar to those in anaerobic cells. At least two components can be distinguished in the decay of the carotenoid absorption changes in anaerobic intact cells. Only the faster decay component was inhibited by venturicidin which suggests that it corresponds to H+ flux through the F0F1-ATPase during ATP synthesis. The contribution of the venturicidin-sensitive decay to the total decay was dependent upon the initial amplitude of the carotenoid absorption change produced by the flash group. This suggests that there is an apparent threshold of membrane potential for ATP synthesis. Supporting evidence was provided by the finding that venturicidin stimulated the steady-state light-induced carotenoid absorption change at high but not at low light intensities. The entire decay of the carotenoid absorption changes was stimulated by carbonyl cyanide p-trifluoromethoxyphenylhydrazone in a manner that can be interpreted as an ionophore catalysing the dissipation of membrane potential.  相似文献   

7.
K.M. Petty  J.B. Jackson 《BBA》1979,547(3):463-473
ATP synthesis and the acceleration of the decay of the carotenoid absorption band shift after single flash excitation of Rhodopseudomonas capsulata chromatophores were compared. The two processes behave similarly with respect to: (1) ADP and Pi concentration; (2) inhibition by efrapeptin and venturicidin, and (3) inhibition by valinomycin/K+ and by ionophores.Taken together with earlier evidence for the electrochromic nature of the carotenoid band shift the data support the contention that positive charge moves outwards across the chromatophore membrane during ATP synthesis and justify the method for determination of the H+/ATP ratio (Petty, K.M. and Jackson, J.B. (1979) FEBS Lett. 97, 367–372).The ability of nucleotide diphosphates in the presence of Pi and Mg2+ to give rise to the acceleration of the carotenoid shift decay closely correlates with the rate of phosphorylation of the nucleotides in steady-state light. Nucleotide triphosphates enhance the decay in parallel with their rate of hydrolysis.Adenylyl imidodiphosphate is itself without effect on the decay of the carotenoid shift and it does not prevent the ADP-induced acceleration. The analogue does prevent the ATP effect but only after repeated flashes.  相似文献   

8.
A technique for the estimation of light-induced membrane potential in chromatophores is described. It is based on measurement of light-induced enhancement in fluorescence of 8-anilinonaphthalene sulfonic acid, which is calibrated by known K+ diffusion potentials. The electrochemical proton gradient (ΔμH+?) formed during lightinduced electron transport in Rhodospirillum rubrum chromatophores amounts to 250 mV, which is almost equally distributed between the membrane potential and the pH gradient as measured by changes in the fluorescence of anilinonaphthalene sulfonate and 9-amino acridine. Addition of the permeant anion, NaSCN, or of NH4Cl reduces the overall ΔμH+? by less than 20% but changes its distribution between the pH gradient and the membrane potential so that with NaSCN it is composed mainly of the first and with NH4Cl mainly of the second. Initiation of phosphorylation causes a drop of about 50 mV in the measured ΔμH+?. In the absence of salts, the drop is observed in both components, although two-thirds of it are reflected in the membrane potential. In the presence of NaSCN or NH4Cl the 50-mV drop is exclusively recorded in the pH gradient or in the membrane potential, respectively. The steady-state phosphate potential maintained during electron transport was found to change in parallel to the ΔμH+?, but exceeded it by 60 to 80 mV when based on a stoichiometry of two protons translocated per ATP synthesized.  相似文献   

9.
Photosynthetic chromatophores of Rhodobacter capsulatus were differently enriched in phospholipid content by freezing, thawing and sonicating in the presence of phospholipid vesicles. Closed vesicles, characterized by different phospholipid to protein molar ratios and increasing average radius at increasing phospholipid enrichment, were collected after sucrose density gradient sedimentation. The electrical capacitance of these systems was evaluated from the ratio of reaction center content, photooxidized by single turnover flash in the presence of antimycin, to the corresponding membrane potential difference, measured from the electrochromic red shift of the endogenous carotenoid band. The values obtained, normalized per protein content, increased at increasing phospholipid enrichment, and correlated linearly with the increasing phospholipid to protein molar ratios. The charging capacitance of chromatophores was evaluated to be 3–6×10-17 F and was found to increase at increasing average radius of the phospholipid enriched vesicles, as predicted by the equation of the spherical shell dielectric. The carotenoid signal, elicited in the dark by imposing diffusion potentials of known extent with K+-valinomycin pulses, significantly decreased at high phospholipid enrichment, indicating that in the presence of large phospholipid excess, a partial displacement of the carotenoid molecules sensing the induced electric field is produced. Concomitantly, the energy transfer efficiency from carotenoids to core light harvesting complexes (B-875) was also partially affected, particularly at high phospholipid to protein molar ratio. All together, these results suggest that the reaction center complexes are dispersed within the lipid bilayer upon fusion and that carotenoids sense a delocalized light-induced transmembrane field.Abbreviations BChl bacteriochlorophyll - [BChl]2 reaction center - PL phospholipid - cyt cytochrome - transmembrane electrical potential difference - TES 2-2-Hydroxy-1,1-bis-(hydroxymethyl)ethyl-amino-ethanosulfonic acid - mgp mg protein  相似文献   

10.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

11.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

12.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

13.
Antimycin A causes a biphasic suppression of the light-induced membrane potential generation in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides chromatophores incubated anaerobically. The first phase is observed at low antibiotic concentrations and is apparently due to its action as a cyclic electron transfer inhibitor. The second phase is manifested at concentrations which are greater than 1–2 μM and is due to uncoupling that may be connected with an antibiotic-induced dissipation of the electrochemical H+ gradient across the chromatophore membrane. The inhibitory effect of anti-mycin added at low concentrations under aerobic conditions is removed by succinate to a large extent. It is expected that the electrogenic cyclic redox chain in the bacterial chromatophores incubated under conditions of continuous illumination may function at two regimes: (1) as a complete chain involving all the redox components, and (2) as a shortened chain involving only the P-870 photoreaction center, ubiquinone and cytochrome c2.  相似文献   

14.
Generation of photoelectric potential in chromatophores of Rhodopseudomonas sphaeroides has been measured (i) spectrophotometrically, using electrochromic shift of carotenoid absorption band or (ii) electrometrically, by means of two electrodes separated by a collodion film covered on one side with chromatophores. A 15 ns laser flash was used to induce a single turnover of photosynthetic reaction centers. It was found that results obtained by both methods are similar in (i) direction of electric vector (the chromatophore interior positive) and (ii) redox titration curves (Em = 10mV). The magnitudes of the photopotential were about 60 and 25 mV, when monitored with spectral and electrometric techniques, respectively. In both cases, the rise times of the photopotentials were faster than time resolution of the techniques used. Decay of the response of carotenoids was found to be slower than that in the collodion film system. The addition of ubiquinone Q10 into the decane solution of asolectin used to impregnate the collodion film led to slowing down of the decay. The carotenoid response decay could be accelerated by FCCP or o-phenanthroline. In the latter case, the shape of the decay curve coincides with decay of the photopotential measured in the collodion film system. It is suggested that decane extracts secondary ubiquinone from chromatophores attached to the collodion film. Such an unfavorable effect can be strongly decreased by added ubiquinone  相似文献   

15.
16.
Kim HY  Coté GG  Crain RC 《Plant physiology》1992,99(4):1532-1539
Rhythmic light-sensitive movements of the leaflets of Samanea saman depend upon ion fluxes across the plasma membrane of extensor and flexor cells in opposing regions of the leaf-movement organ (pulvinus). We have isolated protoplasts from the extensor and flexor regions of S. saman pulvini and have examined the effects of brief 30-second exposures to white, blue, or red light on the relative membrane potential using the fluorescent dye, 3,3′-dipropylthiadicarbocyanine iodide. White and blue light induced transient membrane hyperpolarization of both extensor and flexor protoplasts; red light had no effect. Following white or blue light-induced hyperpolarization, the addition of 200 millimolar K+ resulted in a rapid depolarization of extensor, but not of flexor protoplasts. In contrast, addition of K+ following red light or in darkness resulted in a rapid depolarization of flexor, but not of extensor protoplasts. In both flexor and extensor protoplasts, depolarization was completely inhibited by tetraethylammonium, implicating channel-mediated movement of K+ ions. These results suggest that K+ channels are closed in extensor plasma membranes and open in flexor plasma membranes in darkness and that white and blue light, but not red light, close the channels in flexor plasma membranes and open them in extensor plasma membranes. Vanadate treatment inhibited hyperpolarization in response to blue or white light, but did not affect K+ -induced depolarization. This suggests that white or blue light-induced hyperpolarization results from activation of the H+ -ATPase, but this hyperpolarization is not the sole factor controlling the opening of K+ channels.  相似文献   

17.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

18.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

19.
J.B. Jackson  S. Saphon  H.T. Witt 《BBA》1975,408(1):83-92
1. In chromatophores from Rps. sphaeroides, the stimulation by ADP and Pi of the electric potential decay indicated by the carotenoid shift is greater than the stimulation of the decay of the pH change indicated by the colour change of added cresol red under similar conditions. This difference is attributed to H+ consumption during the synthesis of ATP. The ratio of H+ translocated across the membrane to ATP synthesized was estimated to be approximately 1.7 H+ATP.2. The stimulation of the electrical potential decay by ADP and Pi was found to be a constant fraction (10%) of the total decay when the flash intensity was varied. No ‘critical’ or ‘threshold’ potential was observed.3. The stimulated electrical potential decay after a second flash, given within a few seconds of the first, was related to the amplitude of the electrical potential produced by the second flash (10%) but neither to the dark time between the flashes, nor to the total extent of the electrical potential above the dark level. These results are consistent with two hypotheses (a) the chromatophores are a mixed population of vesicles, only a small fraction (10%) of which possess an active ATP synthesizing system (b) the activity of the ATP synthesizing system, though driven by a proton motive force, is controlled by electron transport processess. If alternative (a) is correct then the overall single turnover flash yield of 1 ATP per 1470 bacteriochlorophyll measured in (1) would mean that the yield of the active vesicles is approximately 10 ATP per 1470 bacteriochlorophyll or 30 ATP per vesicle.4. The stimulation of the electrical potential decay by ADP and Pi is approximately 40% less in antimycin-treated chromatophores. It is shown that this is probably a consequence of antimycin-inhibited H+-release on the inside of the chromatophore vesicles following a flash.  相似文献   

20.
Membrane potential, Vm, and K+(86Rb+) fluxes have been measured simultaneously on individual cells of Acetabularia mediterranea. During resting state (resting potential approx. ?170 mV) the K+ influx amounts to 0.24–0.6 pmol · cm?2 · s?1 and the K+ efflux to 0.2–1.5 pmol · cm?2 s?1. According to the K+ concentrations inside and outside the cell (40 : 1) the voltage dependent K+ flux (zero at Vm = EK = ?90 mV) is stimulated approx. 40-fold for Vm more positive than EK.It is calculated that during one action potential (temporary depolarization to Vm more positive than EK) a cell looses the same amount of K+, which leaks in during 10–20 min in the resting state (Vm = ?170 mV). Since action potentials occur spontaneously in Acetabularia, they are therefore suggested to have a significant function for the K+ balance of this alga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号