首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclododecapeptide, (Ala1-Pro2-Gly3-Val4-Gly5-Val6)2, was synthesized and its secondary structure was evaluated from extensive studies in dimethyl sulphoxide, trifluoroethanol and water using NMR methods. A selective decoupling technique in 13C-NMR has been utilized in order to assign the C=O carbon resonances. Temperature dependence of the peptide NH protons and the solvent perturbation of the peptide NH and C=O resonances show the occurrence in all solvents of a beta-turn (a 10-membered H-bond between the Val4 NH and Ala1 C=O) and a gamma-turn, an 11-membered H-bond between the Gly3 NH and the Gly5 C=O; and a possible 14-membered H-bond between the Ala1 NH and the Val4 C=O in dimethyl sulphoxide and trifluoroethanol. These secondary structural features are compared with the linear polyhexapeptide and found the the beta-turn and the gamma-turn are the common conformational features of these peptide systems.  相似文献   

2.
M Altstein  Y Dudai  Z Vogel 《FEBS letters》1984,166(1):183-188
Two proteolytic activities that degrade [Leu5]enkephalin were found in Torpedo californica electric organ. One is a soluble aminopeptidase that degrades enkephalin at the Tyr1-Gly2 peptide bond, and the second is an endopeptidase that degrades enkephalin at the Gly3-Phe4 peptide bond. The aminopeptidase is inhibited by low concentrations of puromycin and bestatin. More than 60% of the endopeptidase is associated with the particulate fraction and is almost completely inhibited by low concentrations of captopril (SQ 14225) or SQ 20881 (potent inhibitors of angiotensin converting enzyme). Thiorphan and phosphoramidon (potent enkephalinase inhibitors) are much less effective. The pattern of cleavage and inhibition of the particulate endopeptidase thus resembles that of angiotensin converting enzyme.  相似文献   

3.
Adverse life experiences increase the lifetime risk to several stress‐related psychopathologies, such as anxiety or depressive‐like symptoms following stress in adulthood. However, the neurochemical modulations triggered by stress have not been fully characterized. Neuropeptides play an important role as signaling molecules that contribute to physiological regulation and have been linked to neurological and psychiatric diseases. However, little is known about the influence of stress on neuropeptide regulation in the brain. Here, we have performed an exploratory study of how neuropeptide expression at adulthood is modulated by experiencing a period of multiple stressful experiences. We have targeted hippocampus and prefrontal cortex (PFC) brain areas, which have previously been shown to be modulated by stressors, employing a targeted liquid chromatography‐mass spectrometry (LC‐MS) based approach that permits broad peptide coverage with high sensitivity. We found that in the hippocampus, Met‐enkephalin, Met‐enkephalin‐Arg‐Phe, and Met‐enkephalin‐Arg‐Gly‐Leu were upregulated, while Leu‐enkephalin and Little SAAS were downregulated after stress. In the PFC area, Met‐enkephalin‐Arg‐Phe, Met‐enkephalin‐Arg‐Gly‐Leu, peptide PHI‐27, somatostatin‐28 (AA1‐12), and Little SAAS were all downregulated. This systematic evaluation of neuropeptide alterations in the hippocampus and PFC suggests that stressors impact neuropeptides and that neuropeptide regulation is brain‐area specific. These findings suggest several potential peptide candidates, which warrant further investigations in terms of correlation with depression‐associated behaviors.  相似文献   

4.
We have used antisera directed towards eight different portions of the proenkephalin molecule to examine the processing rates and patterns of proenkephalin-derived peptides in chromaffin cell cultures in the presence and absence of reserpine. Reserpine treatment produced profound effects on the molecular weight profile of nearly all enkephalin-containing peptides. Increased production of low molecular weight immunoreactive [Met5]enkephalin, [Leu5]enkephalin, [Met5]enkephalin-Arg6-Gly7-Leu8, and [Met5]enkephalin-Arg6-Phe7 was observed in reserpine-treated cultures; immunoreactivity corresponding to several intermediate sized enkephalin-containing peptides such as Peptide B and the high molecular weight [Met5]enkephalin-Arg6-Gly7-Leu8 immunoreactive peptide was decreased. The production of two amidated opioid peptides, amidorphin and metorphamide, was greatly accelerated in the presence of reserpine. The increased levels of low molecular weight enkephalins could not be accounted for by assuming decreased basal release. These results indicate that reserpine treatment is able to increase the extent of post-translational processing of proenkephalin within chromaffin cells.  相似文献   

5.
Metabolism of opioid peptides by cerebral microvascular aminopeptidase M   总被引:2,自引:0,他引:2  
Aminopeptidase M (EC 3.4.11.2), which can degrade low molecular weight opioid peptides, has been reported in both peripheral vasculature and in the CNS. Thus, we have studied the metabolism of opioid peptides by membrane-bound aminopeptidase M derived from cerebral microvessels of hog and rabbit. Both hog and rabbit microvessels were found to contain membrane-bound aminopeptidase M. At neutral pH, microvessels preferentially degraded low molecular weight opioid peptides by hydrolysis of the N-terminal Tyr1-Gly2 bond. Degradation was inhibited by amastatin (I50 = 0.2 microM) and bestatin (10 microM), but not by a number of other peptidase inhibitors including captopril and phosphoramidon. Rates of degradation were highest for the shorter peptides (Met5- and Leu5-enkephalin) whereas beta-endorphin was nearly completely resistant to N-terminal hydrolysis. Km values for the microvascular aminopeptidase also decreased significantly with increasing peptide length (Km = 91.3 +/- 4.9 and 28.9 +/- 3.5 microM for Met5-enkephalin and Met5-enkephalin-Arg6-Phe7, respectively). Peptides known to be present within or in close proximity to cerebral vessels (e.g., neurotensin and substance P) competitively inhibited enkephalin degradation (Ki = 20.4 +/- 2.5 and 7.9 +/- 1.6 microM, respectively). These data suggest that cerebral microvascular aminopeptidase M may play a role in vivo in modulating peptide-mediated local cerebral blood flow, and in preventing circulating enkephalins from crossing the blood-brain barrier.  相似文献   

6.
M D Bruch  J Rizo  L M Gierasch 《Biopolymers》1992,32(12):1741-1754
In an effort to explore the influence of interfacial environments on reverse turns, we have performed a detailed analysis by nmr of the solution conformations of two cyclic pentapeptides in sodium dodecyl sulfate (SDS) micelles. The first peptide, cyclo (D-Phe1-Pro2-Gly3-D-Ala4-Pro5), adopts a single rigid conformation in solution (either chloroform or dimethylsulfoxide) and in crystals, whereas the second, cyclo (Gly1-Pro2-D-Phe3-Gly4-Val5), is much more flexible and adopts different conformations in the crystal and in solution. Both of these peptides are solubilized by SDS micelles, and nmr relaxation rates indicate that they are both partially immobilized by interaction with the micelles. Furthermore, some amide protons in both peptides participate in hydrogen bonds with water. In the presence of micelles, the former peptide retains a conformation essentially the same as that found in crystals and in solution, which consists of a beta turn and an inverse gamma turn. However, the micellar environment has a significant effect on the latter peptide. In particular, the population of a conformer containing a cis Gly-Pro peptide bond is increased significantly. The most likely conformation of the cis isomer, determined by a combination of nmr and restrained molecular dynamics, contains a Gly1-Pro2 delta turn and a gamma turn about D-Phe3. The nmr data on the trans isomer indicate that this isomer is averaging between two conformations that differ mainly in the orientation of the D-Phe3-Gly4 peptide bond.  相似文献   

7.
For immunohistochemical demonstration of the enkephalin octapeptide Met5-enkephalin-Arg6-Gly7-Leu8, the peptide was conjugated with a carrier protein using either glutaraldehyde or 1-ethyl-3 (3-dimethylaminopropyl)-carbodiimide as coupling agent. Antisera were raised in rabbits and their specificity was studied using the immunoblotting technique. The results suggest that glutaraldehyde selectively couples the amino terminus of the peptide to the carrier protein, while carbodiimide coupling produces a mixture of specificities. Accordingly, antiserum raised against the glutaraldehyde-induced conjugate specifically recognized the peptide carboxyl terminus and allowed immunohistochemical distinction of the octapeptide from other closely related opioid peptides, such as Leu5- and Met5-enkephalin, Met5-enkephalin-Arg6-Phe7, and Phe1-Met2-Arg3-Phe4-NH2. In contrast, antiserum raised against the carbodiimide-induced octapeptide conjugate showed a mixture of specificities. Addition of glutaraldehyde to the fixative enhanced octapeptide immunoreactivity in several tissues and revealed a previously unknown nerve system in the pituitary gland. These results support the idea that optimal immunohistochemical demonstration of small molecules, which requires conjugation to a carrier protein, is obtained when the coupling agent is included in the fixative so as to induce the actual coupling reaction during fixation.  相似文献   

8.
Biological activities are reported for two different types of analogues of methionine enkephalin. Cyclic analogues, bridged between the amino- and carboxy- terminals of the parent peptide, are inactive. In contrast, significant levels of activity are displayed by linear isosterically modified analogues in which the Tyr1-Gly2 peptide bond is replaced by either -CH2NH- or -CH2CH2-. Similar replacements of the Gly2-Gly3 peptide bond yield compounds with much reduced potency. These modifications serve as useful probes of the receptor conformation. Based on these findings, a model is proposed for interaction between enkephalin and its receptor.  相似文献   

9.
Diethylglycine (Deg) residues incorporated into peptides can stabilize fully extended (C5) or helical conformations. The conformations of three tetrapeptides Boc-Xxx-Deg-Xxx-Deg-OMe (Xxx=Gly, GD4; Leu, LD4 and Pro, PD4) have been investigated by NMR. In the Gly and Leu peptides, NOE data suggest that the local conformations at the Deg residues are fully extended. Low temperature coefficients for the Deg(2) and Deg(4) NH groups are consistent with their inaccessibility to solvent, in a C5 conformation. NMR evidence supports a folded beta-turn conformation involving Deg(2)-Gly(3), stabilized by a 4-->1 intramolecular hydrogen bond between Pro(1) CO and Deg(4) NH in the proline containing peptide (PD4). The crystal structure of GD4 reveals a hydrated multiple turn conformation with Gly(1)-Deg(2) adopting a distorted type II/II' conformation, while the Deg(2)-Pro(3) segment adopts a type III/III' structure. A lone water molecule is inserted into the potential 4-->1 hydrogen bond of the Gly(1)-Deg(2) beta-turn.  相似文献   

10.
R Simantov  H Snyder 《Life sciences》1976,18(8):781-787
The ability of bovine brain extracts to compete in a selective fashion for opiate receptor binding is attributable to a small peptide. The substance has been purified to homogeneity and identified as comprising two penta-peptides HTyrGlyGlyPheLeuOH (Leucine-enkephalin) and HTyrGlyGlyPheMetOH (methionine enkephalin). Bovine brain contains 4 times as much leucine-enkephalin as methionine-enkephalin in contrast to pig brain in which these ratios are reversed. Competition for opiate receptor binding by leucine-enkephalin is reduced more by sodium and enhanced more by manganese than is the case for methionine-enkephalin, suggesting that leucine-enkephalin may be a “purer” agonist than methionine-enkephalin.  相似文献   

11.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

12.
Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.  相似文献   

13.
125I[D-Ala2, Met5] enkephalin with high specific activity (122-185 Ci/mmol) was prepared and purified by Sep-Pak C18 reverse phase cartridge followed by high performance liquid chromatography (HPLC). HPLC at pH 3.0 resolved 125I[D-Ala2, Met5] enkephalin into two fractions, which ran as a single spot in thin-layer chromatography with the same Rf values. Alkaline hydrolysates of the HPLC-purified fractions showed a single spot corresponding to monoiodotyrosine standard when analysed by thin-layer chromatography. Binding kinetics of the tracer was found to approach equilibrium after 30 min at 24 degrees. Scatchard analysis of the saturation equilibrium binding studies gave an equilibrium dissociation constant of 3.58 nM and the number of binding site of 30 fmol/mg protein. Enkephalin analogs were capable of displacing 125I[D-Ala2, Met5] enkephalin binding from the rat brain plasma membrane. The effective concentration of [D-Ala2, Met5] enkephalin and [D-Ala2, Leu5] enkephalin for 50% inhibition of 125I[D-Ala2, Met5] enkephalin binding was estimated to be 79 nM and 23 nM, respectively. Both substance P and gastrin tetrapeptide failed to displace the 125I[D-Ala2, Met5] enkephalin binding to any significant extent. The 125I[D-Ala2, Met5] enkephalin prepared by the present procedure is therefore a useful tracer. This method of preparing radioiodinated peptide may be applicable to other enkephalin analogs or neuropeptides in general.  相似文献   

14.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

15.
The conformation and calcium binding properties of the bicyclic nonapeptide BCP2, cyclo-(Glu(1)-Ala(2)-Pro(3)-Gly(4)-Lys(5)-Ala(6)-Pro(7)-Gly(8))-cyclo-(1gamma --> 5epsilon) Gly(9), have been investigated by means of NMR spectroscopy. Interproton distances, evaluated by nuclear Overhauser effect (NOE) contacts, and straight phi angles, from (3)J(NH-alphaCH), have been used to obtain a feasible model for the BCP2-Ca(2+) (BCP: bicyclic peptide) complex by means of restrained molecular dynamics (RMD). The NMR analysis of the free peptide, carried out in CD(3)CN, shows the presence in solution of at least four conformers in intermediate exchange rate. The addition of calcium ions caused the appearance of a new set of resonances, differing from those observed for the free BCP2. A comparison with published data about the conformational behavior of the closely analogous peptide BCP3, differing from BCP2 for two Leu residues instead of two Ala residues in positions 2 and 6, shows that this simple substitution dramatically increases the peptide flexibility. On the contrary, upon calcium ion addition, both BCP2 and BCP3 reach a strictly close conformation, as strongly testified by the almost identical (1)H-NMR spectra exhibited by both peptides. The RMD molecular model of the BCP2-Ca(2+) complex, here reported, is a quite symmetric structure, presenting a three-dimensional cavity ideal for the binding of spherical cations. Four carbonyls from the main ring (Ala(2), Gly(4), Ala(6) and Gly(8)) point toward it, offering, together with the two carbonyls of the peptide bridge (Gly(9) and gammaGlu(1)), putative coordinations to the cation.  相似文献   

16.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

17.
The orientation and pore-forming mechanisms of pandinin 2 (pin2), an antimicrobial peptide isolated from venom of the African scorpion Pandinus imperator, bound to magnetically oriented lipid bilayers were examined by 31P and 13C solid-state, and 15N liquid-state NMR spectroscopy. 31P NMR measurements at various temperatures, under neutral and acidic conditions, showed that membrane lysis occurred only under acidic conditions, and at temperatures below the liquid crystal-gel phase transition of the lipid bilayers, after incubation for two days in the magnet. Differential scanning calorimetry measurements showed that pin2 induced negative curvature strain in lipid bilayers. The 13C chemical shift values of synthetic pin2 labeled at Gly3, Gly8, Leu12, Phe17, or Ser18 under static or slow magic-angle spinning conditions, indicate that pin2 penetrates the membrane with its average helical axis perpendicular to the membrane surface. Furthermore, amide H-D exchange experiments of 15N-Ala4, Gly8, and Ala9 triply-labeled pin2 suggest that this peptide forms oligomers and confirms that the N-terminal region creates membrane pores.  相似文献   

18.
Aburi M  Smith PE 《Biopolymers》2002,64(4):177-188
The conformations of Leu enkephalin in aqueous solution have been investigated as a function of pH using molecular dynamics simulations. The simulations suggest the peptide backbone exists as a mixture of folded and unfolded forms (approximately 50% each) at neutral pH, but is always unfolded at low or high pH. The folded form at neutral pH possesses a 2 --> 5 hydrogen bond and a close head to tail separation. No significant intramolecular hydrogen bonding of the carbonyl oxygens was observed in either the folded or unfolded forms of the peptide. Analysis of the Gly carbonyl oxygens and terminal groups indicated that, while the conformational population distribution of Leu enkephalin did vary noticeably as a function of pH, their hydration was essentially independent of pH and in agreement with the available NMR data. Further study indicated that the unfolded state of the peptide was not random in nature and consisted of one major unfolded backbone arrangement stabilized by a persistent hydrophobic interaction between the side chains of Tyr and Leu.  相似文献   

19.
The rabbit cerebellum has been shown to contain significant quantities of opioid receptors consisting of both mu- and kappa-subtypes. To determine the nature of the endogenous opioid ligands in this tissue, extracts from rabbit cerebellum were separated by various chromatography techniques and fractions were assayed initially for opioid peptides with a radioimmunoassay capable of detecting all peptides with an amino-terminal Tyr-Gly-Gly-Phe sequence. This sequence is common to all mammalian opioid peptides and is critical for recognition by all known opioid receptors. Each of the three immunoreactive opioid peptide peaks detected was purified to homogeneity and subjected to amino acid composition and sequence analysis. One peak was analyzed further by mass spectrometry. This identified the major opioid peptides in the cerebellum as [Met5]enkephalin, [Leu5]enkephalin, and heptapeptide [Met5]enkephalyl-Arg6-Phe7. The comprehensiveness of this initial detection scheme in identifying biologically active opioid peptides was substantiated through subsequent analysis. Using specific radioimmunoassays for representative opioid peptides of the three opioid systems currently known, no other peptides of either the proenkephalin, proopiomelanocortin, or prodynorphin series were detected in any appreciable amounts. Collectively, these results are consistent with the position that rabbit cerebellar opioids are derived from proenkephalin. However, given that no appreciable quantities of either [Met5]enkephalyl-Arg6-Arg7-Val8-NH2 (metorphamide) or [Met5]enkephalyl-Arg6-Gly7-Leu8 were detected suggests that rabbit proenkephalin may have a slightly altered sequence and/or is differentially processed relative to other mammalian species studied.  相似文献   

20.
CRAMP was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. This peptide shows potent antimicrobial activity against gram-positive and gram-negative bacteria but no hemolytic activity against human erythrocytes. CRAMP was known to cause rapid permeabilization of the inner membrane of Escherichia coli. In this study, the structure of CRAMP in TFE/H2O (1 : 1, v/v) solution was determined by CD and NMR spectroscopy. CD spectra showed that CRAMP adopts a mainly alpha-helical conformation in TFE/H2O solution, DPC micelles, SDS micelles and liposomes, whereas it has a random structure in aqueous solution. The tertiary structure of CRAMP in TFE/H2O (1 : 1, v/v), as determined by NMR spectroscopy, consists of two amphipathic alpha-helices from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Previous analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 was found to retain antibacterial activity. Therefore, the amphipathic alpha-helical region from Gly16 to Leu33 of CRAMP plays important roles in spanning the lipid bilayers as well as its antibiotic activity. Based on this structure, novel antibiotic peptides having strong antibiotic activity, with no hemolytic effect will be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号