首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human prorenin is an inactive zymogen comprising 43 amino acid residues at the amino terminus of human renin. The aim of this work was to determine why prorenin is inactive at neutral pH. Eighteen different mutant prorenins, in which positively charged residues in the propeptide were substituted with either glutamine (Gln) or lysine (Lys) residues by site-directed mutagenesis, were expressed in COS-7 cells and characterized. By replacing each of the three arginine (Arg) residues (Arg10P, Arg15P, and Arg20P) with Gln residues, partially active prorenins were produced, which exhibited significant but not full renin activity without trypsin activation. The effect of double or triple amino acid substitutions on the appearance of active prorenin was cumulative, the activity reaching about 80% in a mutant in which all the three Arg residues were replaced by Gln residues. In contrast, mutant prorenins with Lys residues substituted for the Arg residues were inactive. These results clearly indicate that the positive charges of the three Arg residues are essential for maintenance of the human prorenin in an inactive form.  相似文献   

2.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

3.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

4.
Transfer RNA (tRNA) molecules play vital roles during protein synthesis. Their acceptor arms are aminoacylated with specific amino acid residues while their anticodons delimit codon specificity. The history of these two functions has been generally linked in evolutionary studies of the genetic code. However, these functions could have been differentially recruited as evolutionary signatures were left embedded in tRNA molecules. Here we built phylogenies derived from the sequence and structure of tRNA, we forced taxa into monophyletic groups using constraint analyses, tested competing evolutionary hypotheses, and generated timelines of amino acid charging and codon discovery. Charging of Sec, Tyr, Ser and Leu appeared ancient, while specificities related to Asn, Met, and Arg were derived. The timelines also uncovered an early role of the second and then first codon bases, identified codons for Ala and Pro as the most ancient, and revealed important evolutionary take-overs related to the loss of the long variable arm in tRNA. The lack of correlation between ancestries of amino acid charging and encoding indicated that the separate discoveries of these functions reflected independent histories of recruitment. These histories were probably curbed by co-options and important take-overs during early diversification of the living world.  相似文献   

5.
1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme.  相似文献   

6.
Activation of methionine by Escherichia coli methionyl-tRNA synthetase   总被引:3,自引:0,他引:3  
G Ghosh  H Pelka  L H Schulman  S Brunie 《Biochemistry》1991,30(40):9569-9575
In the present work, we have examined the function of three amino acid residues in the active site of Escherichia coli methionyl-tRNA synthetase (MetRS) in substrate binding and catalysis using site-directed mutagenesis. Conversion of Asp52 to Ala resulted in a 10,000-fold decrease in the rate of ATP-PPi exchange catalyzed by MetRS with little or no effect on the Km's for methionine or ATP or on the Km for the cognate tRNA in the aminoacylation reaction. Substitution of the side chain of Arg233 with that of Gln resulted in a 25-fold increase in the Km for methionine and a 2000-fold decrease in kcat for ATP-PPi exchange, with no change in the Km for ATP or tRNA. These results indicate that Asp52 and Arg233 play important roles in stabilization of the transition state for methionyl adenylate formation, possibly directly interacting with complementary charged groups (ammonium and carboxyl) on the bound amino acid. Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS. The synthetases most closely related to MetRS (including those specific for Ile, Leu, and Val) also have a conserved arginine residue at the position corresponding to Arg233, suggesting that these conserved amino acids may play analogous roles in the activation reaction catalyzed by each of these enzymes. Trp305 is located in a pocket deep within the active site of MetRS that has been postulated to form the binding cleft for the methionine side chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Misquitta SA  Colman RF 《Biochemistry》2005,44(24):8608-8619
To study the communication between the two active sites of dimeric glutathione S-transferase A1-1, we used heterodimers containing one wild-type (WT) active site and one active site with a single mutation at either Tyr9, Arg15, or Arg131. Tyr9 and Arg15 are part of the active site of the same subunit, while Arg131 contributes to the active site of the opposite subunit. The V(max) values of Tyr9 and Arg15 mutant enzymes were less than 2% that of WT, indicating their importance in catalysis. In contrast, V(max) values of Arg131 mutant enzymes were about 50-90% of that of WT enzyme while K(m)(GSH) values were approximately 3-8 times that of WT, suggesting that Arg131 plays a role in glutathione binding. The mutant enzyme (with a His(6) tag) and the WT enzyme (without a His(6) tag) were used to construct heterodimers (WT-Y9F, WT-Y9T, WT-R15Q, WT-R131M, WT-R131Q, and WT-R131E) by incubation of a mixture of wild-type and mutant enzyme at pH 7.5 in buffer containing 1,6-hexanediol, followed by dialysis against buffer lacking the organic solvent. The resultant heterodimers were separated from the wild-type and mutant homodimers using chromatography on nickel-nitrilotriacetic acid agarose. The V(max) values of all heterodimers were lower than expected for independent active sites. Our experiments demonstrate that mutation of an amino acid residue in one active site affects the activity in the other active site. Modeling studies show that key amino acid residues and water molecules connect the two active sites. This connectivity is responsible for the cross-talk between the active sites.  相似文献   

8.
Anthranilate synthase I (ASI) of Bacillus caldotenax, a thermophilic bacterium, was purified from a plasmid-bearing Escherichia coli and characterized. The molecular weight determination under native and denaturing conditions revealed that it was a monomeric enzyme of M(r) = 54,000. The N-terminal amino acid sequence is the same as expected from DNA sequence of trpE except that the N-terminal methionine is lacking. All four cysteines in the molecule could be titrated with 5,5'-dithiobis (2-nitrobenzoic acid) in more than 8 M urea. The purified enzyme retained its full enzymatic activity after being heated at 60 degrees C. Six mutated genes for the ASI with histidine in place of each conserved arginine, Arg321, Arg353, Arg358, Arg416, Arg429, and Arg452, were prepared by site-directed mutagenesis. All the mutated genes except one, the gene encoding an ASI mutant with histidine in place of Arg452 (R452H ASI) complemented an E. coli (trpE). The mutated ASIs were purified and compared with the wild type ASI. No distinctive differences in enzymatic properties were found between the wild type and the enzymatically active mutated ASIs. R452H ASI was enzymatically inactive, though its conformation seemed to be unchanged after the substitution based on CD spectra and the SH titration curve.  相似文献   

9.
Asparaginyl-tRNA synthetase (AsnRS) is a member of the class-II aminoacyl-tRNA synthetases, and is responsible for catalyzing the specific aminoacylation of tRNA(Asn) with asparagine. Here, the crystal structure of AsnRS from Pyrococcus horikoshii, complexed with asparaginyl-adenylate (Asn-AMP), was determined at 1.45 A resolution, and those of free AsnRS and AsnRS complexed with an Asn-AMP analog (Asn-SA) were solved at 1.98 and 1.80 A resolutions, respectively. All of the crystal structures have many solvent molecules, which form a network of hydrogen-bonding interactions that surrounds the entire AsnRS molecule. In the AsnRS/Asn-AMP complex (or the AsnRS/Asn-SA), one side of the bound Asn-AMP (or Asn-SA) is completely covered by the solvent molecules, which complement the binding site. In particular, two of these water molecules were found to interact directly with the asparagine amide and carbonyl groups, respectively, and to contribute to the formation of a pocket highly complementary to the asparagine side-chain. Thus, these two water molecules appear to play a key role in the strict recognition of asparagine and the discrimination against aspartic acid by the AsnRS. This water-assisted asparagine recognition by the AsnRS strikingly contrasts with the fact that the aspartic acid recognition by the closely related aspartyl-tRNA synthetase is achieved exclusively through extensive interactions with protein amino acid residues. Furthermore, based on a docking model of AsnRS and tRNA, a single arginine residue (Arg83) in the AsnRS was postulated to be involved in the recognition of the third position of the tRNA(Asn) anticodon (U36). We performed a mutational analysis of this particular arginine residue, and confirmed its significance in the tRNA recognition.  相似文献   

10.
11.
TRNA2Gln Su+2 mutants that increase amber suppression.   总被引:7,自引:2,他引:5       下载免费PDF全文
We selected mutants of lambda pSu+2 which had an increased ability to suppress on Escherichia coli trp B9601 amber mutation on translationally stringent rpsL594 streptomycin-resistant ribosomes. tRNA2Gin Su+2 molecules produced from eight independent mutants were purified, and their ribonucleic acid sequences were determined. Two types of mutations were mapped to the tRNA2Gin Su+2(glnV) gene by this method. Both altered the pseudouridine at position 37 of the tRNA anticodon loop. Seven of the isolates were transitions (pseudouridine to cytosine), and one was a transversion (pseudouridine to adenine). These mutations resulted in Su+ transfer ribonucleic acid molecules that exhibited higher transmission coefficients than their parent Su+2 transfer ribonucleic acids. As judged by their suppressor spectra on T4 amber mutants, which were almost identical to that of Su+2, the two mutant Su+ transfer ribonucleic acids inserted glutamine at amber sites.  相似文献   

12.
An acute administration of phenylalanine to neonatal animals has been reported to result in large decreases in the intracellular concentrations of several essential amino acids in neural tissue, as well as an inhibition of neural protein synthesis. The present report evaluates the effects of the loss of amino acids on the concentrations of aminoacyl-tRNA in vivo, with the view that an alteration in the concentrations of specific aminoacyl-tRNA molecules could be the rate-limiting step in brain protein metabolism during hyperphenylalaninaemia. tRNA was isolated from saline- and phenylalanine-injected mice 30-45 min after injection, by using a procedure designed to maintain the concentrations of aminoacyl-tRNA present in vivo. Periodate oxidation of the non-acylated tRNA and aminoacylation with radioactively labelled amino acids was used to determine the proportion of tRNA that was present in vivo as aminoacyl-tRNA. Although decreases in the intracellular concentrations of alanine, lysine and leucine were observed after phenylalanine administration, the concentrations of alanyl-tRNA, lysyl-tRNA and leucyl-tRNA actually increased by 15%. Although tryptophan has been suggested to be rate-limiting during hyperphenylalaninaemia, the proportion of tryptophan tRNA that was acylated was maximal in both normal and hyperphenylalaninaemic animals. This unexpected increase in aminoacyl-tRNA concentration is discussed as perhaps a secondary effect resulting from the phenylalanine-induced inhibition of protein synthesis. In contrast, the proportion of methionine tRNA that was acylated in vivo after phenylalanine administration was demonstrated to be decreased by approx. 17%. When the isoaccepting species of methionine tRNA were separated by reverse-phase column chromatography, three species were separated, one of which was demonstrated to be the initiator species, tRNAfMet, by the selective aminoacylation and formylation with Escherichia coli enzymes. After the administration of phenylalanine, the acylation of each of the three methionine tRNA species was decreased, with the initiator species being lowered by 10%. This effect on aminoacylation of tRNAfMet may be the primary step by which phenylalanine affects neural protein synthesis, and this is consistent with previous reports that re-initiation may be inhibited during hyperphenylalaninaemia.  相似文献   

13.
14.
Yeast tRNA Lys2 codes preferentially for AAA and contains a 2-thiouridine derivative (U) at the 5'-position of the anticodon. Removal of the 2-thio group from U by treatment with CNBr did not affect the amino acid accepting activity of the modified tRNA Lys2. CNBr treated tRNA Lys2 was active in protein synthesis but with a much reduced efficiency. Although the modified tRNA Lys2 was recognized by elongation factor (EF) T, the EFT dependent binding to ribosomes to tRNA Lys2 (CNBr) was markedly decreased.  相似文献   

15.
Molybdenum enzymes containing the pterin cofactor are a diverse group of enzymes that catalyse in general oxygen atom transfer reactions. Aiming at studying the amino acid residues, which are important for the enzymatic specificity, we used nitrate reductase from Ralstonia eutropha (R.e.NAP) as a model system for mutational studies at the active site. We mutated amino acids at the Mo active site (Cys181 and Arg421) as well as amino acids in the funnel leading to it (Met182, Asp196, Glu197, and the double mutant Glu197-Asp196). The mutations were made on the basis of the structural comparison of nitrate reductases with formate dehydrogenases (FDH), which show very similar three-dimensional structures, but clear differences in amino acids surrounding the active site. For mutations Arg421Lys and Glu197Ala we found a reduced nitrate activity while the other mutations resulted in complete loss of activity. In spite of the partial of total loss of nitrate reductase activity, these mutants do not, however, display FDH activity.  相似文献   

16.
Rabbit liver tRNA nucleotidyltransferase was used to synthesize modified tRNA molecules containing an additional CMP residue at the 3′ terminus. In the first step tRNA-C-C was converted to tRNA-C-C-C by a minor activity of the purified enzyme. In the second step the lengthened molecules were converted to tRNA-C-C-C-A. AMP addition to tRNA-C-C-C occurred at about 50% the rate with tRNA-C-C. Aminoacylation studies indicated that tRNA-C-C-C-A was active for acceptance of at least 12 amino acids.  相似文献   

17.
18.
Mutants of the Escherichia coli initiator tRNA (tRNA(fMet)) have been used to examine the role of the anticodon and discriminator base in in vivo aminoacylation of tRNAs by cysteinyl-tRNA synthetase. Substitution of the methionine anticodon CAU with the cysteine anticodon GCA was found to allow initiation of protein synthesis by the mutant tRNA from a complementary initiation codon in a reporter protein. Sequencing of the protein revealed that cysteine comprised about half of the amino acid at the N terminus. An additional mutation, converting the discriminator base of tRNA(GCAfMet) from A73 to the base present in tRNA(Cys) (U73), resulted in a 6-fold increase in the amount of protein produced and insertion of greater than or equal to 90% cysteine in response to the complementary initiation codon. Substitution of C73 or G73 at the discriminator position led to insertion of little or no cysteine, indicating the importance of U73 for recognition of the tRNA by cysteinyl-tRNA synthetase. Single base changes in the anticodon of tRNA(GCAfMet) containing U73 from GCA to UCA, GUA, GCC, and GCG (changes underlined) eliminated or dramatically reduced cysteine insertion by the mutant initiator tRNA indicating that all three cysteine anticodon bases are essential for specific aminoacylation of the tRNA with cysteine in vivo.  相似文献   

19.
The synthetic tRNA precursors, tRNA-C-114C]U and tRNA-C-C-A-[14C]C-C, as well as poly (a) and diesterase-treated tRNA, have been used to identify and purify potential 3'processing nucleases. Four activities have been separated by this analysis; and three of them have been characterized. Two of the enzymes, which are well-separated on hydroxylapatite columns, act on poly(A), require K+ and Mg2+ for activity, and have molecular weights of about 90,000. These activities have properties previously ascribed to RNase II. The third enzyme does not act on poly(A), requires Mg2+ for activity, and has a molecular weight of about 60,000. It is identical to RNase D, previously characterized as an exonuclease acting on tRNAs with altered structure. Each of the enzymes can remove nucleotides from the tRNA precursor containing extra nucleotides beyond the 3'terminus, whereas they are relatively inactive with intact tRNA or tRNA-C-U. The greatest specificity was displayed by RNase D. The possibility that RNase D is a 3'processing nuclease is discussed.  相似文献   

20.
For discrimination between arginine and 19 other amino acids in aminoacylation of tRNA(Arg)-C-C-A by arginyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values. The lowest values were found for Trp, Cys, Lys (D = 800-8500), showing that arginine is 800-8500 times more often incorporated into tRNA(Arg)-C-C-A than noncognate acids at the same amino acid concentrations. The other noncognate amino acids exhibit D values between 10,000 and 60,000. In aminoacylation of tRNA(Arg)-C-C-A(3'NH2) discrimination factors D1 are in the range 10-600. From these values and AMP formation stoichiometry, pretransfer proof-reading factors II1 were determined; from D values and AMP stoichiometry in aminoacylation of tRNA(Arg)-C-C-A, posttransfer proof-reading factors II2 could be calculated, II1 values between 2 and 120 show that pretransfer proof-reading is the main correction step, posttransfer proof-reading (II2 approximately 1-10) plays a marginal role. Initial discrimination factors due to different Gibbs free energies of binding between arginine and the noncognate amino acids were calculated from discrimination and proof-reading factors. According to a two-step binding process, two factors (I1 and I2) were determined. They can be related to hydrophobic interaction forces and hydrogen bonds that are especially formed by the arginine side chain. A hypothetical 'stopper' model of the amino acid recognition site is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号