首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.

Background

Progressive airway inflammation and susceptibility to the airway colonisation and infection are characteristic for the pathophysiology of chronic obstructive pulmonary disease (COPD). Antimicrobial peptides (AMPs) are central to the function of the innate host immune response against microbial pathogens and are regulators of inflammation and immunity. S100A7/psoriasin, a recently described AMP, is an essential component of the human epithelia against invading pathogens and acts as an effector molecule of the host innate defence in the skin. We hypothesized that S100A7/psoriasin is involved in the airway mucosal immunity and differently regulated and expressed in the lung during progression of COPD.

Methods

S100A7/psoriasin gene expression was assessed in bronchial biopsies and bronchoalveolar lavage (BAL) fluid cells of healthy controls and COPD patients. Using confocal microscopy and immunohistochemistry, the protein expression of S100A7/psoriasin was investigated.

Results

Here, we report that S100A7/psoriasin, the major antimicrobial peptide of the human skin, is constitutively expressed in perinuclear granules of human bronchial epithelial cells and alveolar macrophages. Whereas typical activators of the innate immune response like TLR ligands and cytokines induced the upregulation of CXCL-8 mRNA and release of CXCL-8 by epithelial cells, S100A7/psoriasin mRNA expression was not modulated. To investigate a potential association of S100A7/psoriasin with COPD, S100A7/psoriasin mRNA expression was assessed in bronchial biopsies and BAL fluid cells of patients at different stages of COPD and controls. Overall, 10 healthy individuals and 34 COPD patients were enrolled in this study. We found an association of S100A7/psoriasin mRNA expression with bacterial detection in the tracheobronchial system (p = 0.0304), which was the strongest in individuals positive for with S. aureus (p = 0.0005). However, S100A7/psoriasin mRNA expression was not altered during the progression of COPD.

Conclusions

S100A7/psoriasin gene expression is unchanged in the airways during COPD. The newly identified association of S100A7/psoriasin with S. aureus may provide new insights into the antimicrobial defence response of the human airways, leading to the induction of S100A7/psoriasin upon microbial challenge.  相似文献   

2.
Psoriasin (S100A7), a member of the S100 family of calcium-binding proteins, is highly expressed in high-grade ductal carcinoma in situ (DCIS) and in the benign hyperproliferative skin disorder psoriasis. The gene that encodes psoriasin and many other S100 genes are located within a gene cluster on chromosome region 1q21, known as the epidermal differentiation complex. This cluster contains genes for several differentiation markers that play important roles in the terminal differentiation of the epidermis. The purpose of the present study was to evaluate the role of psoriasin in the differentiation process of mammary epithelial cells. Normal mammary epithelial cells (MCF10A) cultured in confluence and suspension, conditions known to induce psoriasin expression, demonstrated a shift towards a more differentiated phenotype indicated by an increase in the expression of the luminal differentiation markers CD24 and MUC1 and the reduced expression of the breast stem cell marker CD44. The expression of psoriasin and MUC1 was most pronounced in the CD24+-enriched fraction of confluent MCF10A cells. The shift towards a more differentiated phenotype was abolished upon the downregulation of psoriasin using short hairpin RNA (shRNA) and small interfering RNA (siRNA). Using specific inhibitors, we showed that psoriasin and CD24 expression was regulated by reactive oxygen species (ROS) and the nuclear factor (NF)-κB signaling pathways. While immunohistochemical analyses of DCIS showed heterogeneity, the expression of psoriasin and CD24 showed a similar staining pattern. Our findings suggest that the expression of psoriasin is linked to the luminal differentiation marker CD24 in mammary epithelial cells. Psoriasin demonstrated an essential role in the shift towards a more differentiated CD24+ phenotype, supporting the hypothesis that psoriasin plays a role in the differentiation of luminal mammary epithelial cells.  相似文献   

3.
Mutations in the glucocerebrosidase (GBA) and prosaposin (PSAP) genes are responsible for Gaucher disease, the most prevalent sphingolipidosis. Somatic cell hybrid analysis and in situ hybridization experiments have localized the GBA gene to 1q21 and the PSAP gene to 10q21-q22. We performed pairwise and multi-point linkage analyses between the two genes and several highly polymorphic markers from the Généthon human linkage map. Our results show that six markers cosegregate with the GBA gene (Zmax = 8.73 at θ = 0.00 for marker D1S2714) and define a 3.2-cM interval between D1S305 and D1S2624 as the most probable location for the gene. Three of these markers (D1S2777, D1S303, and D1S2140), as well as the gene encoding pyruvate kinase (PKLR), are contained in a single YAC clone together with the GBA gene. A new polymorphism was identified within the PSAP gene (C16045T) and used for linkage studies. The multi-point analysis places the gene in a 9.8-cM interval between D10S1688 and D10S607. The fine localization of these genes provides a useful tool for cosegregation analysis, indirect molecular diagnosis, and population genetic studies. Received: 22 October 1996 / Accepted: 4 February 1997  相似文献   

4.
RFLPs were detected in the five subunit genes of the human muscle nicotinic acetylcholine receptor (nAChR) using genomic DNA or cDNA probes from the homologous mouse loci. The RFLPs at the alpha-, beta-, gamma-, delta-, and epsilon-subunit gene loci were analyzed for genetic linkage in 16 families (n = 188). Significant evidence was obtained for close linkage of the β- and ε-nAChR genes and much greater genetic distance between the α-nAChR gene and the γ/δ-nAChR gene complex. The linkage analysis program CRI-MAP was used to map the positions of the β- and ε-nAChR genes relative to seven markers on chromosome 17. The results indicate the β- and ε-nAChR genes are separated by about 5 cM and located in the region of chromosome 17p occupied by D17S1, D17S31, TP53, and D17S513. The statistical evidence was confirmed by hybridization of the β- and ε-nAChR probes to a panel of human-hamster somatic cell hybrids. The α-, γ-, and δ-nAChR genes were placed on a map of 13 chromosome 2 markers. The linkage analysis placed the nAChR genes at two sites on chromosome 2q about equidistant from the marker CRYGP1, with the α-nAChR gene about 27 cM proximal and the γ/δ-nAChR gene complex about 31 cM distal to CRYGP1.  相似文献   

5.
Abstract The human S100 gene family encodes the EF-hand superfamily of calcium-binding proteins, with at least 14 family members clustered relatively closely together on chromosome 1q21. We have analyzed the most recently available genomic sequence of the human S100 gene cluster for evidence of tandem gene duplications during primate evolutionary history. The sequences obtained from both GenBank and GoldenPath were analyzed in detail using various comparative sequence analysis tools. We found that of the S100A genes clustered relatively closely together within a genomic region of 260 kb, only the S100A7 (psoriasin) gene region showed evidence of recent duplications. The S100A7 gene duplicated region is composed of three distinct genomic regions, 33, 11, and 31 kb, respectively, that together harbor at least five identifiable S100A7-like genes. Regions 1 and 3 are in opposite orientation to each other, but each region carries two S100A7-like genes separated by an 11-kb intergenic region (region 2) that has only one S100A7-like gene, providing limited sequence resemblance to regions 1 and 3. The duplicated genomic regions 1 and 3 share a number of different retroelements including five Alu subfamily members that serve as molecular clocks. The shared (paralogous) Alu S insertions suggest that regions 1 and 3 were probably duplicated during or after the phase of AluS amplification some 30–40 mya. We used PCR to amplify an indel within intron 1 of the S100A7a and S100A7c genes that gave the same two expected product sizes using 40 human DNA samples and 1 chimpanzee sample, therefore confirming the presence of the region 1 and 3 duplication in these species. Comparative genomic analysis of the other S100 gene members shows no similarity between intergenic regions, suggesting that they diverged long before the emergence of the primates. This view was supported by the phylogenetic analysis of different human S100 proteins including the human S100A7 protein members. The S100A7 protein, also known as psoriasin, has important functions as a mediator and regulator in skin differentiation and disease (psoriasis), in breast cancer, and as a chemotactic factor for inflammatory cells. This is the first report of five copies of the S100A7 gene in the human genome, which may impact on our understanding of the possible dose effects of these genes in inflammation and normal skin development and pathogenesis.  相似文献   

6.
Saethre-Chotzen syndrome is an autosomal dominant acrocephalosyndactyly syndrome whose gene has been assigned to chromosome 7p. Cytogenetic and linkage analyses have enabled the interval encompassing the disease gene to be delimited to a short region of chromosome 7p15.3–p21.2. Based on the genetic analysis of three unreported families, we confirm the location of the disease gene(s) in the interval defined by loci D7S664 and D7S493 (Zmax = 4.78 at * = 0 at the D7S488 locus) but fail to decide whether one or more disease-causing genes map in this genetic interval. Received: 2 January 1996 / Revised: 21 March 1996  相似文献   

7.
Bovine chromosome 23 (BTA23) contains the bovine major histocompatibility complex (MHC) and is thus of particular interest because of the role of MHC genes in immunity. Previous studies have shown cattle MHC class II genes to be subdivided into two distinct subregions separated by a variable genetic distance of 15–30 cM. To elucidate the genetic events that resulted in the present organization of the class II and other MHC genes, a framework radiation hybrid (RH) map of BTA23 was developed by testing DNA samples from a 5000 rad whole genome RH panel. Twenty-six markers were screened with an average retention frequency of 0.27, ranging from 0.14 to 0.42. Total length of the chromosome was 220 cR5000, with 4.1 cR5000/cM when compared to linkage data. Gene orders for the markers common to both the RH framework map and the consensus framework linkage map are identical. Large centiray intervals,D23S23–D23S7, DYA–D23S24andCYP21–D23S31,were observed compared to linkage distances. These data may indicate a much larger physical distance or suppression of recombination in the interval separating the class II subregions and also within the class I region than previously estimated. Comparison of 13 Type I genes conserved between BTA23 and the human homolog HSA6p suggests the occurrence of an inversion encompassing the centromeric half of the bovine chromosome, thus explaining the large distance between the bovine class IIa and IIb clusters. These results exemplify the power of RH mapping in solving problems in comparative genomics and evolution. Furthermore, noncongruence of the genetic and physical RH map distances indicates that caution must be observed in using either resource alone in searching for candidate genes controlling traits of economic importance.  相似文献   

8.
Summary Three acrotrisomic lines, Triplo IL1S, 3L3S, and 4L4S, each carrying an extra acrocentric chromosome, were used for cytogenetic linkage mapping of barley chromosomes. The cytological structures of the acrocentric chromosome of the three acrotrisomic lines were studied with an improved Giemsa N-banding technique. The long (1L) and short arm (1S) of chromosome 1 had deficiencies of approximately 38% and 65%, respectively. The percentages of deficiencies were 0 and 77.8% for 3L and 3S, and 31.7 and 59.3% for 4L and 4S, respectively. All three genes tested (br, f c , gs3) in 1S and all three genes tested, f8, n and 1k2 in 1L showed a disomic ratio indicating that they are located in the deficient segments. Two genes (a c , yst2) located in the middle segment of 3S in linkage map showed a trisomic ratio, and two others a n , x s showed a disomic ratio. The only gene(f9) tested in 4L showed a trisomic ratio. Two genes (1g4, g1) located in the proximal segment of 4S in the linkage map showed a trisomic ratio, whereas two genes (br2, g13) located distally in 4S showed a disomic ratio, indicating that the breakage occurred between g1 and br2. This experiment demonstrates a new method for physical localization of genes on chromosome segments in material such as barley in which pachytene analysis can not be effectively used for accurate determination of break points in structural changes. Problems associated with this new technique are discussed.Contribution from the Department of Agronomy and published with the approval of the Director of Colorado State University Experiment Station as Scientific Series Paper No. 2823. Supported by USDA/SEA Competitive Research Grant Nos. 5901-0410-9-0334-0 and 82-CRCR-1-1020 and USDA-CSU Cooperative Research Grant 58-9AHZ-2-265  相似文献   

9.
Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease of wheat worldwide. Host plant resistance is the best strategy to manage this disease. Traditionally, bi-parental mapping populations have been used to identify and map quantitative trait loci (QTL) affecting tan spot resistance in wheat. The association mapping (AM) could be an alternative approach to identify QTL based on linkage disequilibrium (LD) within a diverse germplasm set. In this study, we assessed resistance to P. tritici-repentis races 1 and 5 in 567 spring wheat landraces from the USDA-ARS National Small Grains Collection (NSGC). Using 832 diversity array technology (DArT) markers, QTL for resistance to P. tritici-repentis races 1 and 5 were identified. A linear model with principal components suggests that at least seven and three DArT markers were significantly associated with resistance to P. tritici-repentis races 1 and 5, respectively. The DArT markers associated with resistance to race 1 were detected on chromosomes 1D, 2A, 2B, 2D, 4A, 5B, and 7D and explained 1.3–3.1% of the phenotypic variance, while markers associated with resistance to race 5 were distributed on 2D, 6A and 7D, and explained 2.2–5.9% of the phenotypic variance. Some of the genomic regions identified in this study correspond to previously identified loci responsible for resistance to P. tritici-repentis, offering validation for our AM approach. Other regions identified were novel and could possess genes useful for resistance breeding. Some DArT markers associated with resistance to race 1 also were localized in the same regions of wheat chromosomes where QTL for resistance to yellow rust, leaf rust and powdery mildew, have been mapped previously. This study demonstrates that AM can be a useful approach to identify and map novel genomic regions involved in resistance to P. tritici-repentis.  相似文献   

10.
Atopic dermatitis is a common skin disease frequently associated with allergic disorders such as allergic rhinitis and asthma. Controversial linkage findings between atopy and markers at chromosome 11q13 led us to search chromosome 11 for genes conferring susceptibility to atopic dermatitis and atopy. Twelve families were investigated using highly polymorphic markers and a powerful model-free linkage test. Two markers gave evidence for linkage, D11S903 (P = 0.02) and FCER1B (P = 0.005). A two-point lod-score analysis between these two markers revealed significant evidence for linkage (z max = 4.02 at (θ = 0.0). In regard to model-dependent lod-score analyses between atopic disorders and FCER1B, two-point analysis gave a lod score of z = 0.78 whereas two-locus analysis using a recessive-dominant mode of inheritance displayed a significant lod score of z = 3.55. Only 2 of 12 families showed evidence for linkage using the latter oligogenic model. In conclusion, the results of our study map the FCER1B gene in close proximity to D11S903, support the finding of Cookson et al. implicating the IgE high-affinity receptor gene (FCER1B) at 11q13, and furthermore suggest an oligogenic mode of inheritance as well as heterogeneity in the genetic susceptibility to atopy and atopic dermatitis. Received: 6 November 1995 / Accepted: 1 October 1997  相似文献   

11.
S100A7 (psoriasin) is a calcium‐ and zinc‐binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c‐jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp56Gly, Leu78Met, and Gln88Lys—S100A73) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A73/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A73, demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 Å. Despite being positioned at the dimer interface, the Leu78Met mutation is easily accommodated and contributes to a methionine‐rich pocket formed by Met12, Met15, and Met34. In addition to altering the surface charge, the Gln88Lys mutation results in a nearby rotameric shift in Tyr85, leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp56 to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A73 provides a unique perspective from which to characterize the S100A7‐Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.  相似文献   

12.
To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs (Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35, and Pcca-rs), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by 30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2, and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2, or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.  相似文献   

13.
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

14.
A new major urinary protein alleleMup-lc with “null” activity was detected in males of the COP strain. The (BN X COP)F1 X COP backcross had significant segregation distortion of theMup-lc andAco-1 alleles that indicated a linkage between the genes, at a map distance of 13 ± 4 cM. The loci reside on the linkage group II of the rat with theb locus. According to our data and the results published previously, the map distance and the orientation of genes isb - 8 ± 4 -Mup-1 - 13 ±4-Aco-1. These genes form a syntenic group in both the mouse and the rat.  相似文献   

15.
Objective: Interest in mapping genetic variants that are associated with obesity remains high because of the increasing prevalence of obesity and its complications worldwide. Data on genetic determinants of obesity in African populations are rare. Research Methods and Procedures: We have undertaken a genome‐wide scan for body mass index (BMI) in 182 Nigerian families that included 769 individuals. Results: The prevalence of obesity was only 5%, yet polygenic heritability for BMI was in the expected range (0.46 ± 0.07). Tandem repeat markers (402) were typed across the genome with an average map density of 9 cM. Pedigree‐based analysis using a variance components linkage model demonstrated evidence for linkage on chromosome 7 (near marker D7S817 at 7p14) with a logarithm of odds (LOD) score of 3.8 and on chromosome 11 (marker D11S2000 at 11q22) with an LOD score of 3.3. Weaker evidence for linkage was found on chromosomes 1 (1q21, LOD = 2.2) and 8 (8p22, LOD = 2.3). Several candidate genes, including neuropeptide Y, DRD2, APOA4, lamin A/C, and lipoprotein lipase, lie in or close to the chromosomal regions where strong linkage signals were found. Discussion: The findings of this study suggest that, as in other populations with higher prevalences of obesity, positive linkage signals can be found on genome scans for obesity‐related traits. Follow‐up studies may be warranted to investigate these linkages, especially the one on chromosome 11, which has been reported in a population at the opposite end of the BMI distribution.  相似文献   

16.
Flax (Linum usitatissimum L.) seeds contain nearly 50% oil which is high in linolenic acid (an omega-3 fatty acid). In this study, a genetic linkage map was constructed based on 114 expressed sequence tag-derived simple sequence repeat (SSR) markers in addition to five single nucleotide polymorphism markers, five genes (fad2A, fad2B, fad3A, fad3B and dgat1) and one phenotypic trait (seed coat color), using a doubled haploid (DH) population of 78 individuals generated from a cross between SP2047 (a yellow-seeded Solin™ line with 2–4% linolenic acid) and UGG5-5 (a brown-seeded flax line with 63–66% linolenic acid). This map consists of 24 linkage groups with 113 markers spanning ~833.8 cM. Quantitative trait locus (QTL) analysis detected two major QTLs each for linoleic acid (LIO, QLio.crc-LG7, QLio.crc-LG16), linolenic acid (LIN, QLin.crc-LG7, QLin.crc-LG16) and iodine value (IOD, QIod.crc-LG7, QIod.crc-LG16), and one major QTL for palmitic acid (PAL, QPal.crc-LG9). The mutant allele of fad3A, mapped to the chromosomal segment inherited from the parent SP2047, underlies the QTL on linkage group 7 and was positively associated with high LIO content but negatively associated with LIN and IOD. This fad3A locus accounted for approximately 34, 25 and 29% of the phenotypic variation observed in this DH population for these three traits, respectively. The QTL localized on linkage group 16 explained approximately 20, 25 and 13% of the phenotypic variation for these same traits, respectively. For palmitic acid, QPal.crc-LG9 accounted for ~42% of the phenotypic variation. This first SSR-based linkage map in flax will serve as a resource for mapping additional markers, genes and traits, in map-based cloning and in marker-assisted selection.  相似文献   

17.
AvrLepR1 of the fungal pathogen Leptosphaeria maculans is the avirulence gene that corresponds to Brassica LepR1, a plant gene controlling dominant, race-specific resistance to this pathogen. An in vitro cross between the virulent L. maculans isolate, 87-41, and the avirulent isolate, 99-56, was performed in order to map the AvrLepR1 gene. The disease reactions of the 94 of the resulting F1 progenies were tested on the canola line ddm-12-6s-1, which carries LepR1. There were 44 avirulent progenies and 50 virulent progenies suggesting a 1:1 segregation ratio and that the avirulence of 99-56 on ddm-12-6s-1 is controlled by a single gene. Tetrad analysis also indicated a 1:1 segregation ratio. The AvrLepR1 gene was positioned on a genetic map of L. maculans relative to 259 sequence-related amplified polymorphism (SRAP) markers, two cloned avirulence genes (AvrLm1 and AvrLm4-7) and the mating type locus (MAT1). The genetic map consisted of 36 linkage groups, ranging in size from 13.1 to 163.7 cM, and spanned a total of 2,076.4 cM. The AvrLepR1 locus was mapped to linkage group 4, in the 13.1 cM interval flanked by the SRAP markers SBG49-110 and FT161-223. The AvrLm4-7 locus was also positioned on linkage group 4, close to but distinct from the AvrLepR1 locus, in the 5.4 cM interval flanked by FT161-223 and P1314-300. This work will make possible the further characterization and map-based cloning of AvrLepR1. A combination of genetic mapping and pathogenicity tests demonstrated that AvrLepR1 is different from each of the L. maculans avirulence genes that have been characterized previously.  相似文献   

18.
Linkage of the hooded (h), agouti (A), and diabetes insipidus (di) genes was found in (ACI×DI)F1×DI backcross rats. The genetic map distance A-di for females and for males was 19±5 and 28±5 cM, respectively. However, this difference was not significant. The combined data showed the map distance to be 25±4 cM. The three-point cross showed the following corrected distances and order of genes: h-42±4-A-25±4-di. However, the linkage of h and A, although significant (x2=9.03, P<0.001), is only tentative and must be confirmed by additional studies.  相似文献   

19.
A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95/00328 as female parent and TDa 87/01091 as male parent. Since the mapping population was an F1 cross between presumed heterozygous parents, marker segregation data from both parents were initially split into maternal and paternal data sets, and separate genetic linkage maps were constructed. Later, data analysis showed that this was not necessary and thus the combined markers from both parents were used to construct a genetic linkage map. The 469 markers were mapped on 20 linkage groups with a total map length of 1,233 cM and a mean marker spacing of 2.62 cM. The markers segregated like a diploid cross-pollinator population suggesting that the water yam genome is allo-tetraploid (2n = 4x = 40). QTL mapping revealed one AFLP marker E-14/M52-307 located on linkage group 2 that was associated with anthracnose resistance, explaining 10% of the total phenotypic variance. This map covers 65% of the yam genome and is the first linkage map reported for D. alata. The map provides a tool for further genetic analysis of traits of agronomic importance and for using marker-assisted selection in D. alata breeding programmes. QTL mapping opens new avenues for accumulating anthracnose resistance genes in preferred D. alata cultivars.  相似文献   

20.
Through the theoretical analysis of the admixture linkage disequilibrium (ALD) in the gradual admixture (GA) model, in which admixture occurs in every generation, the ALD is found to be proportional to the difference in marker allele frequencies, p1-p2, between two subpopulations. Based on this property, we can employ a strict monotonic function (Δker=Δ/(p1-p2), where Δ denotes the linkage disequilibrium (LD)) of the recombination fraction between the marker locus and the disease locus to infer the true genetic linkage. We construct a quasi likelihood ratio test (LRT) for the case-only data utilizing the information of unlinked markers in the human genome. The simulation results show that our tests can be used to fine map a disease locus. The effects of parameter values in the ALD mapping are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号