首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

2.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

3.
An oxygen-evolving Photosystem (PS) II preparation was isolated after Triton X-100 treatment of spinach thylakoids in the presence of Mg2+. The structural and functional components of this preparation have been identified by SDS-polyacrylamide gel electrophoresis and sensitive spectrophotometric analysis. The main findings were: (1) The concentration of the primary acceptor Q of PS II was 1 per 230 chlorophyll molecules. (2) There are 6 to 7 plastoquinone molecules associated with a ‘quinone-pool’ reducible by Q. (3) The only cytochrome present in significant amounts (cytochrome b-559) occurred at a concentration of 1 per 125 chlorophyll molecules. (4) The only kind of photochemical reaction center complex present was identified by fluorescence induction kinetic analysis as PS IIα. (5) An Em = ? 10 mV has been measured at pH 7.8 for the primary electron acceptor Qα of PS IIα. (6) With conventional SDS-polyacrylamide gel electrophoresis, the preparation was resolved into 13 prominent polypeptide bands with relative molecular masses of 63, 55, 51, 48, 37, 33, 28, 27, 25, 22, 15, 13 and 10 kDa. The 28 kDa band was identified as the PS II light-harvesting chlorophyll ab-protein. In the presence of 2 M urea, however, SDS-polyacrylamide gel electrophoresis showed seven prominent polypeptides with molecular masses of 47, 39, 31, 29, 27, 26 and 13 kDa as well as several minor components. CP I under identical conditions had a molecular mass of 60–63 kDa.  相似文献   

4.
The light-harvesting accessory pigment-protein complex (LHC) with a chlorophyll (Chl) ab ratio of 1.2 was isolated by treating pea chloroplasts with Triton X-100. The LHC was used to investigate the action of ionic (sodium dodecyl sulfate) and non-ionic (Triton X-100) detergents. By optical methods (absorption and fluorescence spectra, measurements of fluorescence yield, ?, and lifetime, τ) two successive stages of the process were demonstrated, namely (1) interaction between detergent monomers and proteins and (2) solubilization of pigments into detergent micelles, which is facilitated by the presence of salts. The concentration ranges, characteristic of these stages, differ by 1.5–2 orders of magnitude for SDS, but slightly overlap for Triton X-100. At the second stage, certain changes occur in LHC absorption and fluorescence spectra. Several stable states of the LHC were established: (1) an aggregated state formed in the presence of 10 mM MgSO4 with τ ≈ 0.6 ns; (2) the dialyzed LHC with τ ≈ 0.9 ns; (3) the states of the LHC in detergent solution with τ ≈ 2.3, 2.9, 3.4 ns; (4) a 30 kilodalton monomer obtained by SDS-polyacrylamide gel electrophoresis with τ ≈ 4.1 ns. The fluorescence parameters of the LHC states were compared with those of Chl a in detergent micelles (for the micelles τ = 5.6–6.0 ns. The τ? ratio (the criterion for emission heterogeneity) for the LHC in the absence of a detergent was shown to be higher at least by a factor of 3.5 than that for Chl a in the presence of a detergent. Successive additions of the detergent to the LHC cause gradual decrease in the τ? ratio, and for the LHC monomer it reaches practically the same value as for Chl a in detergent micelles. The results are discussed on the basis of the data obtained previously. It is suggested that in vivo LHCs do not form such aggregates as in water solution without a detergent.  相似文献   

5.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

6.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

7.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

8.
10% of the chlorophyll associated with a ‘native’ Photosystem (PS) I complex (110 chlorophylls/P-700) is chlorophyll (Chl) b. The Chl b is associated with a specific PS I antenna complex which we designate as LHC-I (i.e., a light-harvesting complex serving PS I). When the native PS I complex is degraded to the core complex by LHC-I extraction, there is a parallel loss of Chl b, fluorescence at 735 nm, together with 647 and 686 nm circular dichroism spectral properties, as well as a group of polypeptides of 24-19 kDa. In this paper we present a method by which the LHC-I complex can be dissociated from the native PS I. The isolated LHC-I contains significant amounts of Chl b (Chl ab ? 3.7). The long-wavelength fluorescence at 730 nm and circular dichroism signal at 686 nm observed in native PS I are maintained in this isolated complex. This isolated fraction also contains the low molecular weight polypeptides lost in the preparation of PS I core complex. We conclude that we have isolated the PS I antenna in an intact state and discuss its in vivo function.  相似文献   

9.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

10.
Electrophoretic analysis by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis showed that the light-harvesting chlorophyll ab-protein complex of barley thylakoids contains only one polypeptide of apparent molecular weight 26 000. The barley mutant, deficient in chlorophyll b and this light-harvesting complex, lacks this polypeptide.The addition of a nonionic detergent, Triton X-100, to the sodium dodecyl solubilization buffer prior to SDS polyacrylamide tube gel electrophoresis, allowed separation of a relatively stable complex, characterized as an oligomeric form of the light-harvesting complex. The oligomer also contained a polypeptide with an apparent molecular weight of 26 000. The absorption and fluorescence spectral properties of the oligomer are similar to those of the monomer. It is suggested that the oligomer of the light-harvesting chlorophyll ab-protein is closer to the in vivo form rather than the monomer.  相似文献   

11.
The phylogenetic distribution of photosystem I-associated polypeptides was assessed by immunoblotting algal thylakoid membrane polypeptides with antisera generated against the P700-chlorophyll a protein (CC I) and a photosystem I light-harvesting chlorophyll-protein (LHC Ib). Polypeptides cross-reacting with the CC I apoprotein were found in 20 species representing four classes of unicellular algae. Polypeptides sharing antigenicity with spinach LHC Ib were observed only in algal species containing chlorophyll b. Tetraselmis spp. (Pleurastrophyceae), rich in chlorophyll b (Chl a:b 1.2), exhibited marked heterogeneity in the composition of their CC I and LHC Ib cross-reactive polypeptides. When immunoblotted with antisera against CC I, all Tetraselmis clones examined exhibited a 25-kD polypeptide in greater abundance than the 58-kD CC I apoprotein characteristic of higher plants and other green algal thylakoids. Three Tetraselmis clones (RG 6, RG 11, and RG 12) exhibited an 81-kD polypeptide with strong antigenicity toward the LHC Ib antisera, in contrast to the 17- to 24-kD cross-reactive polypeptides found in spinach, green algae, and one Tetraselmis clone (RG 5). Associated with the unique photosystem I polypeptide composition in Tetraselmis spp., Chl: P700 ratios for the group are 2–5 times greater than those observed for higher plants or other green algae. The chlorophyll b enrichment, unusual composition of photosystem I cross-reactive polypeptides, and heterogeneity of these polypeptides within isolates of Tetraselmis might make this genus useful for investigations of the functional organization of chlorophyll b in light-harvesting systems. These features also support the view of an alternative phyletic origin for the Pleurastrophyceae.  相似文献   

12.
13.
Phosphorylation in vitro of the light-harvesting chlorophyll ab protein complex associated with Photosystem II (LHCII) resulted in the lateral migration of a subpopulation of LHCII from the grana to the stroma lamellae. This movement was characterized by a decrease in the chlorophyll ab ratio and an increase in the 77 K fluorescence emission at 681 nm in the stroma lamellae following phosphorylation. Polyacrylamide gel electrophoresis indicated that the principal phosphoproteins under these conditions were polypeptides of 26–27 kDa. These polypeptides increased in relative amount in the stroma lamellae and decreased in the grana during phosphorylation. Pulse/chase experiments confirmed that the polypeptides were labelled in the grana and moved to the stroma lamellae in the subsequent chase period. A fraction at the phospho-LHCII, however, was unable to move and remained associated with the grana fraction. LHCII which moved out into the stroma lamellae effectively sensitized Photosystem I (PS I), since the ability to excite fluorescence emission at 735 nm (at 77 K) by chlorophyll b was increased following phosphorylation. These data support the ‘mobile antenna’ hypothesis proposed by Kyle, Staehelin and Arntzen (Arch. Biochem. Biophys. (1983) 222, 527–541) which states that the alterations in the excitation-energy distribution induced by LHCII phosphorylation are, in part, due to the change in absorptive cross-section of PS II and PS I, resulting specifically from the movement of LHCII antennae chlorophylls from the PS-II-enriched grana to the PS-I-enriched stroma lamellae.  相似文献   

14.
The light-harvesting chlorophyll ab-protein complex has been isolated from barley thylakoids by a rapid, single-step procedure involving adsorption chromatography on controlled-pore glass columns. The Triton X-100-solubilized complex contains a polypeptide of apparent molecular weight, 26,000; the 0.25% Triton X-100 light-harvesting chlorophyll ab-protein has spectral characteristics consistent with its assumed in vivo state. On the same column free chlorophyll and carotenoids have been separated from chlorophyll-protein complex 1, but this complex contained many polypeptides other than those associated with chlorophyll. This method is potentially suitable for the isolation of other thylakoid membrane proteins. It may also be generally applicable for fractionation of intrinsic membrane proteins from other sources and for separation of mixed Triton X-100-lipid micelles.  相似文献   

15.
Geoffrey C. Owens  Itzhak Ohad 《BBA》1983,722(1):234-241
Thylakoid polypeptide phosphorylation has been studied in vivo and in vitro during plastid differentiation in Chlamydomonas reinhardii y-1. Pulse labeling cells at different stages of greening with [32P]orthophosphate revealed differences in the pattern of protein phosphorylation. In the early phase of greening the 44–47 kDa reaction center II polypeptides were labeled but the 22–24 kDa polypeptides of the light-harvesting chlorophyll ab-protein complex (LHC) were not. Later in the greening, coinciding with the formation of the antenna of Photosystem I and membrane stacking, the converse was found. Furthermore, the 22–24 kDa polypeptides of grana lamellae were less labeled than the same polypeptides found in the corresponding stroma lamellae. Polypeptides in the molecular mass range of 32–34 kDa were phosphorylated at all stages following the onset of greening. Dark-grown cells did not incorporate 32P in vivo or in vitro into the polypeptides present in the residual thylakoids. Similarly, cells greened in the presence of chloramphenicol, in which the synthesis of reaction centers is inhibited, showed no light-stimulated phosphorylation in vitro. However, the residual 32–34 kDa and 44–47 kDa polypeptides found in thylakoids of these cells were phosphorylated in vivo, whereas the LHC polypeptides synthesized in the presence of chloramphenicol were not. Phosphorylation of the LHC polypeptides (22–24 kDa) in these cells occurred if new reaction center polypeptides and all antennae components were formed, following removal of the inhibitor and further incubation of the cells in the light. Phosphorylation of LHC polypeptides was not resumed if active reaction centers were formed in the absence of complete restoration of all antenna components (incubation in the dark or light with addition of cycloheximide). It is concluded that phosphorylation is correlated with the thylakoid polypeptide content and organization.  相似文献   

16.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

17.
Three chlorophyll-protein complexes of a Chroomonas species (Cryptophyceae) have been separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The two bands at 100 and 42 kDa are Complex I (CP I) and Complex IV (CP IV), the ubiquitous chlorophyll a-proteins associated with Photosystems I and II, respectively. The third 55 kDa band, which had two peptide subunits (24 and 20 kDa), contained both chlorophyll a and chlorophyll c2 in a molar ratio of 1.4 chlorophyll a to 1 chlorophyll c2 (chlorophyll achlorophyll c2 ratio in whole cells = 4). A chlorophyll ac2 fraction with similar spectral and electrophoretic properties was isolated by digitonin-sucrose density gradient centrifugation. This fraction had no photochemical activity and contained only a single carotenoid species with absorbance maxima in methanol at 424, 448 and 476 nm. Efficient energy transfer from chlorophyll c2 to chlorophyll a occurred in the complex.  相似文献   

18.
The Chl-protein complexes of three maize (Zea mays L.) mutants and one barley (Hordeum vulgare L.) mutant were analyzed using low temperature Chl fluorescence emissions spectroscopy and LDS-polyacrylamide gel electrophoresis. The maize mutants hcf-3, hcf-19, and hcf-114 all exhibited a high Chl fluorescence (hcf) phenotype indicating a disruption of the energy transfer within the photosynthetic apparatus. The mutations in each of these maize mutants affects Photosystem II. The barley mutant analyzed was the well characterized Chl b-less mutant chlorina-f2, which did not exhibit the hcf phenotype. Chlorina-f2 was used because no complete Chl b-less mutant of maize is available. Analysis of hcf-3, hcf-19, and hcf-114 revealed that in the absence of CP43, LHC II can still transfer excitation energy to CP47. These results suggest that in mutant membranes LHC II can interact with CP47 as well as CP43. This functional interaction of LHC II with CP47 may only occur in the absence of CP43, however, it is possible that LHC II is positioned in the thylakoid membranes in a manner which allows association with both CP43 and CP47.Abbreviations hcf high chlorophyll fluorescence - LDS lithium dodecyl sulfate - LHC II light-harvesting complex of Photosystem II - LHC I light-harvesting complex of Photosystem I - CPIa chlorophyll-protein complex consisting of LHC I and the PS I core complex - CPI chlorophyll-protein complex consisting of the PS I core complex - CP47 47 kDa chlorophyll-protein of the Photosystem II core - CP43 43 kDa chlorophyll-protein of the Photosystem II core - CP29 29 kDa chlorophyll-protein of Photosystem II - CP26 26 kDa chlorophyll-protein of Photosystem II - CP24 24 kDa chlorophyll-protein of Photosystem II - fp free pigments  相似文献   

19.
The structure and orientation of the major protein constituent of photosynthetic membranes in green plants, the chlorophyll ab light-harvesting complex (LHC) have been investigated by ultraviolet circular dichroism (CD) and polarized infrared spectroscopies. The isolated purified LHC has been reconstituted into phosphatidylcholine vesicles and has been compared to the pea thylakoid membrane. The native orientation of the pigments in the LHC reconstituted in vesicles was characterized by monitoring the low-temperature polarized absorption and fluorescence spectra of reconstituted membranes. Conformational analysis of thylakoid and LHC indicate that a large proportion of the thylakoid protein is in the α-helical structure (56 ± 4%), while the LHC is for 44 ± 7% α-helical. By measuring the infrared dichroism of the amide absorption bands of air-dried oriented multilayers of thylakoids and LHC reconstituted in vesicles, we have estimated the degree of orientation of the α-helical chains with respect to the membrane normal. Infrared dichroism data demonstrate that transmembrane α-helices are present in both thylakoid and LHC with the α-helix axes tilted at less than 30° in LHC and 40° in thylakoid with respect to the membrane normal. In thylakoids, an orientation of the polar C=O ester groups of the lipids parallel to the membrane plane is detected. Our results are consistent with the existence of 3–5 transmembrane α-helical segments in the LHC molecules.  相似文献   

20.
O. Machold  A. Meister 《BBA》1979,546(3):472-480
Thylakoids of Vicia faba chloroplasts disaggregated by sodium dodecyl sulfate were separated by means of different electrophoretic systems. Under the conditions of a high resolving gel system the chlorophyll containing zone previously termed chlorophyll-protein complex II or light-harvesting chlorophyll ab-protein was found to be inhomogeneous. It represents a mixture of two distinct chlorophyll-proteins characterized by different spectral properties and different apoproteins. One chlorophyll-protein exhibits a chlorophyll ab ratio of 0.9 and is associated with polypeptides of 24 000 and 23 000 daltons. The 24 000 dalton band is proved to bind chlorophyll and has a light-harvesting function. The function of the 23 000 dalton band is unknown. The second chlorophyll-protein has a chlorophyll ab ratio of 2.1 and an additional absorption maximum in the position of 637 nm. It is associated with only one polypeptide which has an apparent molecular weight of 23 000. The two 23 000 dalton polypeptides occurring in both complexes are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号