首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70:1 to 110:1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805–860 BChl a antenna of Osc. trichoides is close to the membrane B808–866 BChl a antenna of Chloroflexaceae species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Spectral methods have been used to trace pheophytinization of bacteriochlorophyll (BChl) in the membranes of chromatophores isolated from normal and carotenoidless cells of the purple bacterium Allochromatium minutissimum as well as in the core complexes and peripheral light harvesting complexes in the media with different detergents at low pH values. The well-marked staging of damage of native BChl forms with the absorption band of 885 nm has been revealed: (1) the formation and increase of the absorption band of monomeric BChl (785 nm); (2) pheophytinization of resultant monomeric BChl, and (3) aggregation of bacteriopheophytin (BPheo). Compared to the initial carotenoid complexes, carotenoidless pigment protein complexes were less resistant to the effect of low pH values, especially at the stages of BChl monomerization and pheophytinization. However, BPheo aggregation in them was slower. The electrophoresis in PAAG has shown that BChl pheophytinization in peripheral light harvesting complexes is accompanied by disruption of the ring-shaped structures of the complexes, with appearance of typical fragments consisting of α- and β- peptides and carrying monomeric BPheo, and by formation of α-peptide aggregates carrying BPheo aggregates.  相似文献   

3.
We have studied energy transfer in chlorosomes of Chlorobium limicola UdG6040 containing a mixture of about 50% bacteriochlorophyll (BChl) c and BChl d each. BChl d-depleted chlorosomes were obtained by acid treatment. The energy transfer between the different pigment pools was studied using both steady-state and time-resolved fluorescence spectroscopy at room temperature and low temperature. The steady-state emission of the intact chlorosome originated mainly from BChl c, as judged by comparison of fluorescence emission spectra of intact and BChl d-depleted chlorosomes. This indicated that efficient energy transfer from BChl d to BChl c takes place. At room temperature BChl c/d to BChl a excitation energy transfer (EET) was characterized by two components of 27 and 74 ps. At low temperature we could also observe EET from BChl d to BChl c with a time constant of approximately 4 ps. Kinetic modeling of the low temperature data indicated heterogeneous fluorescence kinetics and suggested the presence of an additional BChl c pool, E790, which is more or less decoupled from the baseplate BChl a. This E790 pool is either a low-lying exciton state of BChl c which acts as a trap at low temperature or alternatively represents the red edge of a broad inhomogeneous absorption band of BChl c. We present a refined model for the organization of the spatially separated pigment pools in chlorosomes of Cb. limicola UdG6040 in which BChl d is situated distal and BChl c proximal with respect to the baseplate.  相似文献   

4.
We have studied the organization of the bacteriochlorophylls (BChl) in isolated chlorosomes of the green sulfur bacterium Chlorobium limicola UdG6040 containing about 50% BChl d and BChl c each. When the chlorosomes are treated in acidic buffer (pH 3.0) two phases in the conversion from BChl to bacteriopheophytin (BPhe) are observed as evidenced by the changes in the absorption spectrum. In the early phase the pheophytinization of BChl d occurs much faster than that of BChl c. In the later phase BChl c and BChl d are converted at similar rates. The delayed BChl c conversion observed in intact chlorosomes is interpreted in terms of spatial separation within the same chlorosome that makes BChl d more accessible to reaction with acid than BChl c. This was supported by acid treatment of in vitro pigment-lipid aggregates which showed that the pheophytinization of aggregates consisting of only BChl c or BChl d takes place with the same rate. Moreover in mixed in vitro aggrega tes where BChl d and BChl c are supposed to be scrambled the two pigments are converted to BPhe simultaneously. Acid treatment of hexanol exposed chlorosomes indicates that the spatial separation of BChl d and BChl c within the chlorosomes is maintained even if the excitonic interaction between BChls has been disturbed by hexanol. Based on these findings it is suggested that BChl d and BChl c in the chlorosome are located distal and proximal, respectively, relative to the chlorosome baseplate.  相似文献   

5.
It was shown that an increase in the bacteriochlorophyll (BChl) c antenna size observed upon lowering growth light intensities led to enhancement of the hyperchromism of the BChl c Q(y) absorption band of the green photosynthetic bacterium Chloroflexus aurantiacus. With femtosecond difference absorption spectroscopy, it was shown that the amplitude of bleaching of the oligomeric BChl c Q(y) band (as compared to that for monomeric BChl a) increased with increasing BChl c content in chlorosomes. This BChl c bleaching amplitude was about doubled as the chlorosomal antenna size was about trebled. Both sets of findings clearly show that a unit BChl c aggregate in the chlorosomal antenna is variable in size and governed by the grow light intensity, thus ensuring the high efficiency of energy transfer within the BChl c antenna regardless of its size.  相似文献   

6.
The organization of bacteriochlorophyll c (BChl c) molecules was studied in normal and carotenoid-deficient chlorosomes isolated from the green phototrophic bacterium Chloroflexus aurantiacus. Carotenoid-deficient chlorosomes were obtained from cells grown in the presence of 60 µg of 2-hydroxybiphenyl per ml. At this concentration, BChl c synthesis was not affected while the formation of the 5.7 kDa chlorosome polypeptide was inhibited by about 50% (M. Foidl et al., submitted). Absorption, linear dichroism and circular dichroism spectroscopy showed that the organization of BChl c molecules with respect to each other as well as to the long axis of the chlorosomes was similar for both types of chlorosomes. Therefore, it is concluded that the organization of BChl c molecules is largely independent on the presence of the bulk of carotenoids as well as of at least half of the normal amount of the 5.7 kDa polypeptide. The Stark spectra of the chlorosomes, as characterized by a large difference polarizability for the ground- and excited states of the interacting BChl c molecules, were much more intense than those of individual pigments. It is proposed that this is caused by the strong overlap of BChl c molecules in the chlorosomes. In contrast to individual chlorophylls, BChl c in chlorosomes did not give rise to a significant difference permanent dipole moment for the ground- and excited states. This observation favors models for the BChl c organization which invoke the anti-parallel stacking of linear BChl c aggregates above those models in which linear BChl c aggregates are stacked in a parallel fashion. The difference between the Stark spectrum of carotenoid-deficient and WT chlorosomes indicates that the carotenoids are in the vicinity of the BChls.  相似文献   

7.
Neerken S  Aartsma TJ  Amesz J 《Biochemistry》2000,39(12):3297-3303
The conversion of excitation energy in the antenna reaction center complex of Heliobacillus mobilis was investigated at 10 K as well as at 275 K by means of time-resolved absorbance difference spectroscopy of isolated membranes in the (sub)picosecond time range. Selective excitation of the primary electron acceptor, chlorophyll (Chl) a 670, and of the different spectral pools of bacteriochlorophyll (BChl) g (BChl g 778, BChl g 793, and BChl g 808) was applied. At 10 K, excitation at 770 or 793 nm resulted on the one hand in rapid energy transfer to BChl g 808 and on the other hand in fast charge separation from excited BChl g 793 ( approximately 1 ps). Once the excitations were on BChl g 808, the bleaching band shifted gradually to the red, from 806 to 813 nm, and charge separation from excited BChl g 808 occurred by a very slow process ( approximately 500 ps). The main purpose of our experiments was to answer the question whether an "alternative" pathway for charge separation exists upon excitation of Chl a 670. Our measurements showed that the amount of oxidized primary donor (P798(+)) relative to that of excited BChl g produced by excitation of Chl a 670 was considerably larger than upon direct excitation of BChl g. This indicates the existence of an alternative pathway for charge separation that does not involve excited antenna BChl g. This effect occurred at 10 K as well as at 275 K. The mechanism for this process is discussed in relation to different trapping models; it is concluded that charge separation occurs directly from excited Chl a 670.  相似文献   

8.
Treatment of H. chlorum membrane preparations with diethyl ether of high degrees of water saturation raised the bacteriochlorophyll (BChl) g' mole fraction, as determined by HPLC analysis of their acetone extracts, toward a level of 40% of total BChl g or higher. Starting from pure BChl g, the BChl g' mole fraction should never exceed 24.6% which is the equilibrium value in diethyl ether. The existence (and possible functioning) of BChl g' in vivo is thus unequivocally demonstrated.  相似文献   

9.
Oxidation of bacteriochlorophyll (BChl) with potassium ferricyanide in membranes and LH2 complexes (carotenoid-less and control samples) from the purple bacteria Allochromatium minutissimum and Rhodobacter sphaeroides as well as BChl photobleaching in a model system have been studied. The oxidation of BChl depended on the type of bacteria. BChl850 was rapidly oxidized in samples from Alc. minutissimum, and BChl800 and BChl850 were slowly oxidized in samples from Rb. sphaeroides. The carotenoids were not involved in protecting BChl from chemical oxidation in the lightharvesting complexes. The appearance of BChl oxidation product was registered in the absorption spectra (absorption maximum about 700 nm) and by HPLC analysis. The oxidized BChl was identified as 3-acetyl-chlorophyll. It differed from BChl by the presence of a double bond in pyrrole ring II at the 7-8 position. The extinction coefficient of 3-acetyl-chlorophyll was about 10 times less than that of BChl850 in the LH2 complex from Alc. minutissimum. In the BChl → 3-acetylchlorophyll transition, the binding constant of the latter with LH2 complex as compared with that of BChl did not change dramatically, as indicated by: (i) preserved electrophoretic mobility of the complex; (ii) the presence of 3-acetyl-chlorophyll in the complex after separation; (iii) the presence of a 3-acetyl-chlorophyll CD signal that was proportional to its absorption spectrum.  相似文献   

10.
Oligomers of [E,E] BChl CF (8, 12-diethyl bacteriochlorophyll c esterified with farnesol (F)) and [Pr,E] BChl CF (analogously, M methyl, Pr propyl) in hexane and aqueous detergent or lipid micelles were studied by means of steady-state absorption, time-resolved fluorescence, and electron spin resonance spectroscopy. The maximum absorption wavelength, excited-state dynamics, and electron spin resonance (EPR) linewidths are similar to those of native and reconstituted chlorosomes of Chlorobium tepidum. The maximum absorption wavelength of oligomers of [E,E] BChl CF was consistently blue-shifted as compared to that of [Pr,E] BChl CF oligomers, which is ascribed to the formation of smaller oligomers with [E,E] BChl CF than [Pr,E] BChl CF. Time-resolved fluorescence measurements show an excited-state lifetime of 10 ps or less in nonreduced samples of native and reconstituted chlorosomes of Chlorobium tepidum. Under reduced conditions the excited-state lifetime increased to tens of picoseconds, and energy transfer to BChl a or long-wavelength absorbing BChl c was observed. Oligomers of [E,E] BChl CF and [Pr,E] BChl CF in aqueous detergent or lipid micelles show a similar short excited-state lifetime under nonreduced conditions and an increase up to several tens of picoseconds upon reduction. These results indicate rapid quenching of excitation energy in nonreduced samples of chlorosomes and aqueous BChl c oligomers. EPR spectroscopy shows that traces of oxidized BChl c radicals are present in nonreduced and absent in reduced samples of chlorosomes and BChl c oligomers. This suggests that the observed short excited-state lifetimes in nonreduced samples of chlorosomes and BChl c oligomers may be ascribed to excited-state quenching by BChl c radicals. The narrow EPR linewidth suggests that the BChl c are arranged in clusters of 16 and 6 molecules in chlorosomes of Chlorobium tepidum and Chloroflexus aurantiacus, respectively.  相似文献   

11.
12.
The gene encoding bacteriochlorophyll (BChl) c synthase was identified by insertional inactivation in the photosynthetic green sulfur bacterium Chlorobium tepidum and was named bchK. The bchK mutant of C. tepidum was rusty-orange in color and completely lacked BChl c. Because of the absence of the BChl c antenna, the mutant grew about seven times slower than the wild type at light intensities that were limiting to the wild type (< 90 micromol m(-2) s(-1)). Various pheophorbides, which probably represent precursors of BChl c which had lost magnesium, accumulated in the mutant cells. A small fraction of these pheophorbides were apparently esterified by the remaining chlorophyll (Chl) a and BChl a synthases in cells. The amounts of BChl a, Chl a, isoprenoid quinones, carotenoids, Fenna-Matthews-Olson protein, and chlorosome envelope protein CsmA were not significantly altered on a cellular basis in the mutant compared to in the wild type. This suggests that the BChl a antennae, photosynthetic reaction centers, and remaining chlorosome components were essentially unaffected in the mutant. Electron microscopy of thin sections revealed that the mutant lacked normal chlorosomes. However, a fraction containing vestigial chlorosomes, denoted "carotenosomes," was partly purified by density centrifugation; these structures contained carotenoids, isoprenoid quinones, and a 798-nm-absorbing BChl a species that is probably protein associated. Because of the absence of the strong BChl c absorption found in the wild type, the bchK mutant should prove valuable for future analyses of the photosynthetic reaction center and of the roles of BChl a in photosynthesis in green bacteria. An evolutionary implication of our findings is that the photosynthetic ancestor of green sulfur bacteria could have evolved without chlorosomes and BChl c and instead used only BChl a-containing proteins as the major light-harvesting antennae.  相似文献   

13.
We have used picosecond absorption spectroscopy with low intensity (5 · 1011–5 · 1012 photons · pulse−1 · cm−2) continuously tunable infrared (800–900 nm) pulses to study the energy transfer dynamics in the isolated B800–850 pigment-protein complex of Rhodobacter sphaeroides. Our results suggest the following picture of the energy transfer dynamics: (i) a fast transfer, within approx. 1 ps, from BChl 800 to BChl 850; (ii) transfer among different BChl 800's with a rate which is at the most of the same order of magnitude as that of BChl 800 → BChl 850 transfer; (iii) very fast transfer (k > 1 · 1012 s−1) between BChl 850 molecules. Assuming Förster type of energy transfer maximum distances of about 22 and 15 Å are obtained for the BChl 800–BChl 850 and BChl 850–BChl 850 separations, respectively.  相似文献   

14.
A new method is described for the isolation of subunits of the light-harvesting complex from Rhodospirillum rubrum (wild type and the G-9 mutant) in yields that approach 100%. The procedure involved treating membrane vesicles with ethylenediaminetetraacetic acid-Triton X-100 to remove components other than the light-harvesting complex and reaction center. In the preparation from wild-type cells, a benzene extraction was then employed to remove carotenoid and ubiquinone. The next step involved a careful addition of the detergent n-octyl beta-D-glucopyranoside, which resulted in a quantitative shift of the long-wavelength absorbance maximum from 873 to 820 nm. This latter complex was then separated from reaction centers by gel filtration on Sephadex G-100. The pigment-protein complex, now absorbing at 820 nm, contained two polypeptides of about 6-kilodalton molecular mass (referred to as alpha and beta) in a 1:1 ratio and two molecules of bacteriochlorophyll (BChl) for each alpha beta pair. This complex is much smaller in size than the original complex absorbing at 873 nm but probably is an associated form such as alpha 2 beta 2 X 4BChl or alpha 3 beta 3 X 6BChl. The 820-nm form could be completely shifted back to a form once again having a longer wavelength lambda max near 873 nm by decreasing the octyl glucoside concentration. Thus, the complex absorbing at 820 nm appears to be a subunit form of the original 873-nm complex.  相似文献   

15.
Chlorosomes were prepared from Chlorobium limicola f. thiosulfatophilum by sucrose density gradient centrifugation. Cells broken in the presence of 2 M NaSCN yielded three chlorosome fractions in the gradient: low density (no sucrose), medium density (approx. 18% sucrose), and high density (approx. 26% sucrose). All fractions were stable at any chlorosome concentration. Cells broken in the absence of 2 M NaSCN also yielded three fractions, but only the high-density fraction contained stable chlorosomes. The medium-density chlorosomes were stable only when highly concentrated. Upon dilution, bacteriochlorophyll (BChl) c was degraded to bacteriopheophytin c and concomitantly a band at 794 nm (BChl a) was revealed. Two 794-nm fractions were observed with the same densities as low- and medium-density chlorosomes. The protein composition of the 794-nm fractions was similar to that of the stable chlorosome fractions. All showed a 4-5 kDa (Mr) protein as a major component, but no trace of the 40-kDa protein characteristic of the water-soluble BChl a-protein of green sulfur bacteria. BChl a was present in all types of chlorosomes, in stable chlorosomes the BChl c/BChl a ratio was approx. 90. A special BChl a-protein (794 nm) inside the chlorosome is postulated to mediate energy transfer from BChl c to the water-soluble BChl a-protein in the baseplate.  相似文献   

16.
We determined the concentrations of bacteriochlorophylls (BChl) in the light-harvesting antennae of Oscillochloris trichoides (of the family Oscillochloridaceae belonging to green filamentous mesophilic bacteria) cultivated either with gabaculine, an inhibitor of the C-5 pathway of BChl biosynthesis in a number of bacteria, or at various illumination intensities. We determined the BChl c: BChl a molar ratios in intact cells, in chlorosome-membrane complexes, and in isolated chlorosomes. We revealed that BChl c synthesis in Osc. trichoides was more gabaculine-sensitive than BChl a synthesis. Accordingly, an increase in gabaculine concentrations in the medium resulted in a decrease in the BChl c: BChl a ratio in the tested samples. We suggest that BChl synthesis in Osc. trichoides proceeds via the C-5 pathway, similar to representatives of other families of green bacteria (Chlorobium limicola and Chloroflexus aurantiacus). We demonstrated that the BChl c: BChl a ratio in the chlorosomes varied from 55 : 1 to 110 : 1, depending on light intensity. This ratio is, therefore, closer to that of Chlorobiaceae, and it significantly exceeds the BChl c: BChl a ratio in Chloroflexaceae.  相似文献   

17.
Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - CD circular dichroism - LD linear dichroism  相似文献   

18.
In chromatophores from Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the Qx band(s) of the light-harvesting bacteriochlorophyll (BChl) (λmax ~590 nm) shifts to the red in response to a light-induced membrane potential, as indicated by the characteristics of the light-minus-dark difference spectrum. In green strains, containing light-harvesting complexes I and II, and one or more of neurosporene, methoxyneurosporene, and hydroxyneurosporene as carotenoids, the absorption changes due to the BChl and carotenoid responses to membrane potential in the spectral region 540–610 nm are comparable in magnitude and overlap with cytochrome and reaction center absorption changes in coupled chromatophores. In strains lacking carotenoid and light-harvesting complex II, the BChl shift absorption change is relatively smaller, due in part to the lower BChl/reaction center ratio.In the carotenoid-containing strains, the peak-to-trough absorption change in the BChl difference spectrum is 5–8% of the peak-to-trough change due to the shift of the longest-wavelength carotenoid band, although the absorption of the BChl band is 25–40% of that of the carotenoid band. The responding BChl band(s) does not appear to be significantly red-shifted in the dark in comparison to the total BChl Qx band absorption.  相似文献   

19.
Fourier transform near-infrared resonance Raman spectroscopy can be used to obtain information on the bacteriochlorophyll a (BChl a) molecules responsible for the redmost absorption band in photosynthetic complexes from purple bacteria. This technique is able to distinguish distortions of the bacteriochlorin macrocycle as small as 0.02 A, and a systematic analysis of those vibrational modes sensitive to BChl a macrocycle conformational changes was recently published [N?veke et al. (1997) J. Raman Spectrosc. 28, 599-604]. The conformation of the two BChl a molecules constituting the primary electron donor in bacterial reaction centers, and of the 850 and 880 nm-absorbing BChl a molecules in the light-harvesting LH2 and LH1 proteins, has been investigated using this technique. From this study it can be concluded that both BChl a molecules of the primary electron donor in the photochemical reaction center are in a conformation close to the relaxed conformation observed for pentacoordinate BChl a in diethyl ether. In contrast, the BChl a molecules responsible for the long-wavelength absorption transition in both LH1 and LH2 antenna complexes are considerably distorted, and furthermore there are noticeable differences between the conformations of the BChl molecules bound to the alpha- and beta-apoproteins. The molecular conformations of the pigments are very similar in all the antenna complexes investigated.  相似文献   

20.
We have determined the molar extinction coefficient of bacteriochlorophyll (BChl) e, the main light-harvesting pigment from brown-coloured photosynthetic sulfur bacteria. The extinction coefficient was determined using pure [Pr,E]BChl eF isolated by reversed-phase HPLC from crude pigment extracts of Chlorobium (Chl.) phaeobacteroides strain CL1401. The extinction coefficients at the Soret and Qy bands were determined in four organic solvents. The extinction coefficient of BChl e differs from those of other related Chlorobium chlorophylls (BChl c and BChl d) but is similar to that of chlorophyll b. The determined extinction coefficient was used to calculate the stoichiometric BChl e to BChl a and BChl e to carotenoids ratios in whole cells and isolated chlorosomes from Chl. phaeobacteroides strain CL1401 using the spectrum-reconstruction method (SRCM) described by Naqvi et al. (1997) (Spectrochim Acta A Mol Biomol Spectrosc 53: 2229–2234) . In isolated chlorosomes, BChl a content was ca. 1% of the total BChl content and the stoichiometric ratio of BChl e to carotenoids was 6. In whole cells, however, BChl a content was 3–4%, owing to the presence of BChl a-containing elements, i.e. FMO protein and reaction centre. An average of 5 BChl e molecules per carotenoid was determined in whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号