首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Renger  H.J. Eckert 《BBA》1981,638(1):161-171
The role of the protein matrix embedding the functionally active redox components of Photosystem II reaction centers has been studied by investigating the effects of procedures which modify the structure of proteins. In order to reduce the influence of the electron transport involving secondary donor and acceptor components, Triswashed chloroplasts were used which are completely deprived of their oxygen-evolving capacity. The functional activity was detected via absorption changes, reflecting at 334 and 690 or 834 nm the turnover of the primary plastoquinone acceptor, X320, and of the photochemically active chlorophyll a complex, Chl aII, respectively, and at 520 nm the transient formation of a transmembrane electric potential gradient. Under repetitive flash excitation of Tris-washed chloroplasts it was found that: (a) The relaxation kinetics at 690 nm become significantly accelerated in the presence of external electron donors. (b) Trypsin treatment blocks to a high degree the turnover of Chl aII and X320 unless exogenous acceptors are present, which directly oxidize X320?, such as K3Fe(CN)6. (c) In the presence of K3Fe(CN)6 the recovery kinetics of Chl aII and X320 are retarded markedly by trypsin, followed by a progressive decline in the extent thereof. (d) 2-(3-Chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), known to reduce the lifetime of S2 and S3 in normal chloroplasts, significantly accelerates the recovery of Chl aII. 10 μs kinetics are observed which correspond with the electron-transfer rate from D1 to Chl a+II. ANT 2p simultaneously retards the decay kinetics of X320? and of the electrochromic absorption changes. (e) The kinetic pattern of the electrochromic absorption changes is also affected by the salt content of the suspension. Under dark-adapted conditions, the 10 μs relaxation kinetics of the 834 nm absorption change due to the first flash are hardly affected by mild trypsinization of 5–10 min duration, whereas the amplitude decreases by approx. 30%. The data obtained in Tris-washed chloroplasts could consistently be interpreted as a modification of the back reaction between X320? and Chl a+II which is caused solely by a change in the reactivity of X320 due to trypsin-induced degradation of the native X320-B apoprotein. Furthermore, ADRY agents are inferred to stimulate cyclic electron flow, which leads to reduction of D+1 between the flashes. A simplified scheme is discussed which describes the functional organization of the reaction center complex.  相似文献   

2.
The room-temperature EPR characteristics of Photosystem II reaction center preparations from spinach, pokeweed and Chlamydomonas reinhardii have been investigated. In all preparations a light-induced increase in EPR Signal II, which arises from the oxidized form of a donor to P-680+, is observed. Spin quantitation, with potassium nitrosodisulfonate as a spin standard, demonstrates that the Signal II species, Z?, is present in approx. 60% of the reaction centers. In response to a flash, the increase in Signal II spin concentration is complete within the 98 μs response time of our instrument. The decay of Z? is dependent on the composition of the particle suspension medium and is accelerated by addition of either reducing agents or lipophilic anions in a process which is first order in these reagents. Comparison of these results with optical data reported previously (Diner, B.A. and Bowes, J.M. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoyunoglou, G., ed.), Vol. 3, pp. 875–883, Balaban, Philadelphia), supports the identification of Z with the P-680+ donor, D1. From the polypeptide composition of the particles used in this study, we conclude that Z is an integral component of the reaction center and use this conclusion to construct a model for the organization of Photosystem II.  相似文献   

3.
A new method of measuring the rate of the back reaction from the state Z+ P680 QA? in Tris-washed chloroplasts is described. By using ratios of back reaction rates we demonstrate a Tris-induced change in the equilibrium between Z and P680 and attribute this change to an alteration of the midpoint potential of Z by Tris treatment. We also demonstrate that the previously observed inhibition of the back reaction by ADRY reagents can be localized at Z and understood in terms of electron donation to Z+ by ADRY reagents.  相似文献   

4.
G. Renger  Y. Inoue 《BBA》1983,725(1):146-154
The effect of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT-2p), known to be the most powerful ADRY agent (Renger, G. (1972) Biochim. Biophys. Acta 256, 428–439), on thermoluminescence has been investigated. Two thermoluminescence bands were analyzed: (a) the emission peaking at about 20–30°C caused by warming up of untreated chloroplasts, illuminated with a single 5 μs flash at room temperature and frozen rapidly to 77 K; and (b) the band emitted in the range of ?10 up 10°C after warming of chloroplast suspensions containing 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) which were illuminated with a single 5 μs flash at ?15°C and frozen rapidly at 77 K. These bands were attributed to the recombination of the B ?S2(S3) and X-320 ?S2 states, respectively (Rutherford, A.W., Crofts, A.R. and Inoue, Y. (1982) Biochim. Biophys. Acta 682, 457–465). It was found that: (1) The B ?S2(S3) band is markedly diminished at very low ANT-2p concentrations of less than one molecule per 2000 chlorophylls. (2) The inhibition of the X-320 ?S2 band requires significantly higher concentrations of ANT-2p (50% peak reduction at one ANT-2p molecule per 100 chlorophylls). (3) Preflashing at room temperature before cooling to ?15°C diminishes the X-320 ?S2 band significantly in the presence of ANT-2p, while almost no effect is observed in its absence. (4) The state X-320 ?S2 decays monoexponentially with a half-lifetime of 2 min at ?15°C in the absence of ANT-2p. In the presence of one ANT-2p molecule per 800 chlorophylls the decay becomes biphasic with half-lifetimes of 0.5 and 2 min and an amplitude ratio of 2:3, respectively. The results obtained can be explained consistently by the function of ANT-2p as an ADRY agent acting as a mobile species within the thylakoid membrane at room temperature. At subzero temperatures, a ‘fixed-place’ mechanism appears to be operative. The implications for the ADRY effect and thermoluminescence are discussed.  相似文献   

5.
The role of Cl? in the electron transfer reactions of the oxidizing side of Photosystem II (PS II) has been studied by measuring the fluorescence yield changes corresponding to the reduction of P+-680, the PS II reaction center chlorophyll, by the secondary PS II donor, Z. In Cl?-depleted chloroplasts, a rapid rise in fluorescence yield was observed following the first and second flashes, but not during the third or subsequent flashes. These results indicate that there exists an additional endogenous electron donor beyond P-680 and Z in Cl?-depleted systems. In contrast, the terminal endogenous donor on the oxidizing side of PS II in Tris-washed preparations has previously been shown to be Z, the component giving rise to EPR signals IIf and IIvf. The rate of reduction of P+-680 in the Cl?-depleted chloroplasts was as rapid as that measured in uninhibited systems, within the time resolution of our instrument. Again, this is in contrast to Tris-washed preparations in which a dramatic decrease in the rate if this reaction has been previously reported. We have also carried out a preliminary study on the rate of rereduction of Z+ in the Cl?-depleted system. Under steady-state conditions, the reduction half-time of Z+ in uninhibited systems was about 450 μs, while in the Cl?-depleted chloroplasts, the reduction of Z+ was biphasic, one phase with a half-time of about 120 ms, and a slower phase with a half-time of several seconds. The appearance of the quenching state due to P+-680 observed following the third flash on excitation of Cl?-depleted chloroplasts was delayed by two flashed when low concentrations of NH2OH (20–50 μM) were included in the medium. Hydrazine at somewhat higher concentrations showed the same effect. This is taken to indicate that the reactions leading to PS II oxidation of NH2OH or NH2NH2 are uninhibited by Cl? depletion. Addition of NH2OH at low concentrations to Tris-washed chloroplasts did not alter the pattern of the fluorescence yield, indicating that the reactions leading to the NH2OH oxidation present in Cl?-depleted systems are absent following Tris inhibition. The results are discussed in terms of an inhibition by Cl? depletion of the reactions of the oxygen-evolving complex. It is suggested that no intermediary redox couple exists between the oxygen-evolving complex and Z, and that Z+ is reduced directly by Mn of the complex. In terms of the S-state model, Cl? depletion appears to inhibit the advancement of the mechanism beyond S2, but not to inhibit the transitions from S0 to S1, or from S1 to S2.  相似文献   

6.
Gerald T. Babcock  Kenneth Sauer 《BBA》1973,325(3):504-519
Linewidth and hyperfine structure measurements of the EPR spectrum of Signal II in spinach chloroplasts show that the signal reflects two alternative states. One state is characterized by a 16-G linewidth and four partially resolved hyperfine components. The other state has 19 G linewidth and five partially resolved hyperfine components. It is possible to interconvert these two states by changing the ionic strength of the chloroplast suspension. Both states of Signal II show similar light-induced increases in dark-adapted chloroplasts and respond to 10-μs white light flashes with identical kinetics.

In chloroplasts at room temperature, Signal II dark decays to 50% of its total light-induced level in about 1 h. Single flashes increase the spin concentration in these aged chloroplasts but with decreased effectiveness compared with fresh, dark-adapted chloroplasts. Carbonyl cyanide-m-chlorophenylhydrazone (CCCP) decreases the decay time of Signal II from hours to seconds without appreciably altering the level of Signal II formed in saturating continuous light. However, both the formation time constant and the extent of Signal II increase stimulated by a single saturating flash are decreased in CCCP-treated chloroplasts.

These results are interpreted in terms of the model, proposed in the preceding paper, in which Signal II is generated by oxidation-reduction reactions on the water side of Photosystem II.  相似文献   


7.
W. Oettmeier  G. Renger 《BBA》1980,593(1):113-124
Diphenylamines with highly electronegative substituents are effective inhibitors of photosynthetic electron transport and photophosphorylation. They inhibit only Photosystem II- and not Photosystem I-dependent photoreductions. As judged from the missing tetramethylphenylenediamine-bypass, displacement experiments with [14C]metribuzin, and measurements of oxygen evolution in trypsinated chloroplasts, diphenylamines act neither as dibromomethylisopropylbenzoquinone- nor as dichlorophenyldimethylurea-type inhibitors. All of the diphenylamines tested were found to function as ADRY-type reagents, (Renger, G. (1972) Biochim. Biophys. Acta 256, 428–439) which modify the stability of redox equivalents stored within the water-splitting enzyme system Y.The site of inhibition of diphenylamines is assumed to be located at the reducing side of Photosystem II or the reaction center itself. The inhibitory effect could involve a modification of cytochrome b-559 or its surrounding. In an assay for herbicidal activity, diphenylamines showed more pronouncing effect on mono- than on dicotyledonous plants.  相似文献   

8.
Rita Barr  Frederick L. Crane 《BBA》1982,681(1):139-142
A 120 min incubation period with sulfhydryl reagents, such as p-chloromercuribenzoic acid, shows greater than 50% loss of electron-transport activity in Photosystem (PS) II of spinach chloroplasts. Since p-chloromercuriphenylsulfonic acid, a nonpenetrating sulfhydryl reagent, and 4,4′-dithiopyridine, a bifunctional sulfhydryl reagent, show greater inhibition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate reduction than of dibromothymoquinone-insensitive indophenol reduction, it is postulated that two different sulfhydryl reagent-sensitive sites are involved in the PS II electron-transport chain of spinach chloroplasts.  相似文献   

9.
In the presence of Cl?, the severity of ammonia-induced inhibition of photosynthetic oxygen evolution is attenuated in spinach thylakoid membranes (Sandusky, P.O. and Yocum, C.F. (1983) FEBS Lett. 162, 339–343). A further examination of this phenomenon using steady-state kinetic analysis suggests that there are two sites of ammonia attack, only one of which is protected by the presence of Cl?. In the case of Tris-induced inhibition of oxygen evolution only the Cl? protected site is evident. In both cases the mechanism of Cl? protection involves the binding of Cl? in competition with the inhibitory amine. Anions (Br? and NO?3) known to reactive oxygen evolution in Cl?-depleted membranes also protect against Tris-induced inhibition, and reactivation of Cl?-depleted membranes by Cl? is competitively inhibited by ammonia. Inactivation of the oxygen-evolving complex by NH2OH is impeded by Cl?, whereas Cl? does not affect the inhibition induced by so-called ADRY reagents. We propose that Cl? functions in the oxygen-evolving complex as a ligand bridging manganese atoms to mediate electron transfer. This model accounts both for the well known Cl? requirement of oxygen evolution, and for the inhibitory effects of amines on this reaction.  相似文献   

10.
Gerald T. Babcock  Kenneth Sauer 《BBA》1975,376(2):329-344
Rapid light-induced transients in EPR Signal IIf (F?+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q? is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E08.0 = +480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential.A model is proposed in which Q?, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F?+). At high potentials D is oxidized in the dark, and the (Q? + F?+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.  相似文献   

11.
G. Renger  R. Hagemann  G. Dohnt 《BBA》1981,636(1):17-26
The electron-transfer reactions between the plastoquinone molecules of the acceptor side of photosystem II have been inferred to be regulated by a proteinaceous component (apoenzyme), which additionally contains the receptor site for DCMU-type inhibitors (Renger, G., (1976) Biochim. Biophys. Acta 440, 287–300). In order to reveal the functional properties of this apoenzyme, the effect of procedures which modify the structure of proteins on the photosystem II electron transport have been investigated in isolated spinach chloroplasts by comparative measurements of O2 evolution and absorption changes at 334 nm induced by repetitive flash excitation and of fluorescence induction curves caused by continuous actinic light. It was found that: (1) The release of blockage of O2 evolution by the DCMU-type inhibitor SN 58132 due to mild tryptic digestion correlates kinetically with the deterioration of the binding properties. (2) Glutaraldehyde fixation of chloroplasts does not markedly modify the reoxidation kinetics of the reduced primary plastoquinone acceptor component, X320?, of photosystem II, but it greatly reduces the fluorescence yield of the antenna chlorophylls and slightly retards the ADRY effect. Furthermore, it prevents the attack of trypsin on the apoenzyme. (3) Incubation of chloroplasts in ‘low’ salt medium markedly diminishes the ability of trypsin to release the blockage of O2 evolution by SN 58132 and completely presents the effect on inhibition by DCMU. Based on these results and taking into account recent findings of other groups, the functional mechanism of the electron transport on the acceptor side of photosystem II is discussed. Assuming a tunnel mechanism, the apoprotein is inferred to act as a dynamic regulator rather than changing only the relative levels of the redox potentials of the plastoquinone molecules involved in the transfer steps. It is further concluded that salt depletion does not only cause grana unstacking and a change of the excitation energy transfer probabilities, but it additionally modifies the orientation of functional membrane proteins of photosystem II and their structural interaction within the thylakoid membrane.  相似文献   

12.
J. Haveman  P. Mathis 《BBA》1976,440(2):346-355
A comparative study is made, at 15 °C, of flash-induced absorption changes around 820 nm (attributed to the primary donors of Photosystems I and II) and 705 nm (Photosystem I only), in normal chloroplasts and in chloroplasts where O2 evolution was inhibited by low pH or by Tris-treatment.At pH 7.5, with untreated chloroplasts, the absorption changes around 820 nm are shown to be due to P-700 alone. Any contribution of the primary donor of Photosystem II should be in times shorter than 60 μs.When chloroplasts are inhibited at the donor side of Photosystem II by low pH, an additional absorption change at 820 nm appears with an amplitude which, at pH 4.0, is slightly higher than the signal due to oxidized P-700. This additional signal is attributed to the primary donor of Photosystem II. It decays (t12 about 180 μs) mainly by back reaction with the primary acceptor and partly by reduction by another electron donor. Acid-washed chloroplasts resuspended at pH 7.5 still present the signal due to Photosystem II (t12 about 120 μs). This shows that the acid inhibition of the first secondary donor of Photosystem II is irreversible.In Tris-treated chloroplasts, absorption changes at 820 nm due to the primary donor of Photosystem II are also observed, but to a lesser extent and only after some charge accumulation at the donor side. They decay with a half-time of 120 μs.  相似文献   

13.
Yung-Sing Li 《BBA》1975,376(1):180-188
Chloroplast fluorescence was excited by a weak measuring beam. A time-separated actinic light was used to modify the redox states of Q which in turn induced a change in the fluorescence yield. In salt-depleted chloroplasts, fluorescence saturated at a low actinic light intensity. CaCl2 increased the “variable” fluorescence as well as the rate of ferricyanide-Hill reaction. With Tris-washed chloroplasts, Photosystem II donor couple, phenylenediamine and ascorbate, did not increase the fluorescence to a large extent without the presence of CaCl2. It is suggested that salt-depletion inactivates the Photosystem II reaction center of chloroplasts.  相似文献   

14.
S. Izawa  Donald R. Ort 《BBA》1974,357(1):127-143
NH2OH-treated, non-water oxidizing chloroplasts are shown to be capable of oxidizing ferrocyanide and I? via Photosystem II at appreciable rates (? 200 μequiv/h per mg chlorophyll). Using methylviologen as electron acceptor, ferrocyanide oxidation can be measured as O2 uptake, as ferricyanide formation, or as H+ consumption (2 Fe2+ + 2H+ + O2 → 2 Fe3+ + H2O2). I? oxidation can be measured as methylviologen-mediated O2 uptake, or spectrophotometrically, using ferricyanide as electron acceptor. The oxidation product I2 is re-reduced, as it is formed, by unknown reducing substances in the reaction system.The rate-saturating concentrations of these donors are very high: 30 mM with ferricyanide and 15 mM with I?. Relatively lipophilic Photosystem II donors such as catechol, benzidine and p-aminophenol saturate the photooxidation rate at much lower concentrations (< 0.5 mM). It thus seems that the oxidation of hydrophilic reductants such as ferricyanide and I? is limited by permeability barriers. Very likely the site of Photosystem II oxidation is embedded in the thylakoid membrane or is situated on the inner surface of the membrane.The efficiency of phosphorylation (P/e2) is 0.5 to 0.6 with ferrocyanide and about 0.5 with I?. In contrast the P/e2 ratio is 1.0 to 1.2 when water, catechol, p-aminophenol or benzidine serves as electron donor. These differences imply that only one of two phosphorylation sites operate when ferrocyanide and I? are oxidized. Ferrocyanide and I? are also chemically distinct from other Photosystem II donors in that their oxidation does not involve proton release. It is suggested that the mechanism of energy conservation associated with Photosystem II may be only operative when the removal of electrons from the donor results in release of protons (i.e. with water, hydroquinones, phenylamines, etc.).  相似文献   

15.
Jeannine Maroc  Jacques Garnier 《BBA》1979,548(2):374-385
Five substituted 2-anilinothiophenes and two substituted carbonylcyanide-phenylhydrazones were comparatively studied with respect to their capacities for inducing photooxidation of the cytochrome b-559 in chloroplast fragments and in whole cells of Chlamydomonas reinhardtii (wild type and P-700-lacking mutant Fl 5). In addition, some other compounds: antimycin A, picric acid, tetraphenylboron and NH4Cl were also tested.Cytochrome b-559 photooxidations were clearly observed in the presence of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT 2p), 2-(3,4,5-trichloro)anilino-3,5-dinitrothiophene (ANT 2s), 2-(4-chloro)anilino-3,5-dinitrothiophene and, with greater amplitudes, in the presence of carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, both in whole cells and in chloroplast fragments. Picric acid, antimycin A and tetraphenylboron were also able to induce cytochrome b-559 photooxidation in chloroplast fragments, but not in whole cells. In the wild type, the highest photoinduced redox changes were 1.1 (carbonylcyanide-p-trifluoromethoxyphenylhydrazone, carbonylcyanide-m-chlorophenylhydrazone) and 0.6 (ANT 2p, ANT 2s) μmol of oxidized cytochrome b-559/1 mmol of chlorophyll, corresponding to 40% and 23% of the redox changes which could be induced chemically. All these cytochrome b-559 photooxidations, the greater part of which was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and occurred in the mutant Fl 5, appeared to be mainly Photosystem II-dependent reactions. But 3-(3,4-dichlorophenyl)-1,1-dimethylureainsensitive Photosystem I-dependent photooxidations of cytochrome b-559 occurred also in the wild type. On the other hand, 2-(4-dimethylamine)-anilino-3,5-dinitrothiophene, 2-N-methyl-(3-chloro-4-trifluoromethyl)anilino3,5-dinitrothiophene and NH4Cl did not induce any cytochrome b-559 photooxidation.These results were discussed taking in consideration the nature of the molecular substitutions of the various tested substances and their respective acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis capacities which had been defined elsewhere by Renger (Renger, G. (1972) Biochim. Biophys. Acta 256, 428–439) for spinach chloroplasts. Like the acceleration of the deactivation reactions of the water-splitting enzyme system Y effect, the capacity for inducing the cytochrome b-559 photooxidation appeared dependent on the acidity of the NH group and on the number of halogenous substituents in the aromatic ring of the molecule. The greatest action towards cytochrome b-559 photooxidation was obtained with the most active acceleration of the deactivation reactions of the water-splitting enzyme system Y agents: carbonylcyanide-p-trifluoromethoxyphenylhydrazone, ANT 2p and ANT 2s.  相似文献   

16.
G. Renger  Ch. Wolff 《BBA》1976,423(3):610-614
In Tris-washed chloroplasts the kinetics of the primary electron acceptor X 320 of reaction center II has been investigated by fast repetitive flash spectroscopy with a time resolution of ≈ 1 μs. It has been found that X 320 is reduced by a flash in ? 1 μs. The subsequent reoxidation in the dark occurs mainly by a reaction with a 100–200 μs kinetics. The light-induced difference spectrum confirms X 320 to be the reactive species. From these results it is concluded that in Tris-washed chloroplasts the reaction centers of System II are characterized by a high photochemical turnover rate mediated either via rapid direct charge recombination or via fast cyclic electron flow.  相似文献   

17.
Detailed absorbance difference spectra are reported for the Photosystem II acceptor Q, the secondary donor Z, and the donor involved in photosynthetic oxygen evolution which we call M. The spectra of Z and Q could be resolved by analysis of flash-induced kinetics of prompt and delayed fluorescence, EPR signal IIf and absorbance changes in Tris-washed system II preparations in the presence of ferricyanide and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). The spectrum of Z oxidation consists mainly of positive bands at 260, 300 and 390–450 nm on which a chlorophyll a band shift around 438 nm is superimposed, and is largely pH-independent as is also the case for the spectrum of Q reduction. The re-reduction of Z+ occurred in the millisecond time range, and could be explained by a competition between back reaction with Q? (120 ms at pH 6.0) and reduction by ferrocyanide. When the Tris treatment is omitted the preparations evolve oxygen, and the photoreduction of Q (with DCMU present) is accompanied by the oxidation of M. The Q spectrum being known, the spectrum of the oxidation of M could be determined as well. It consists of a broad, asymmetric increase peaking near 305 nm and of a Chl a band shift, which is about the same as that accompanying Z in Tris-washed system II. Comparison with spectra of model compounds suggests that Z is a bound plastoquinol which is oxidized to the semiquinone cation and that the oxidation of M is an Mn(III) → Mn(IV) transition.  相似文献   

18.
C.C. Schenck  B. Diner  P. Mathis  K. Satoh 《BBA》1982,680(2):216-227
Light excitation of chloroplasts at low temperature produces absorption changes (ΔA) with a large positive peak at 990 nm and a bleaching around 480 nm. ΔA at 990 nm rises with t12 = 0.6 ms at 20–77 K and remains largely stable. This signal is not observed when Photosystem II (PS II) photochemistry is blocked by reduction of the primary plastoquinone. It is observed also in purified PS II particles, in which case it could be shown that during a sequence of short flashes, the absorption at 990 nm rises in parallel with plastoquinone reduction measured at 320 nm. In chloroplasts the light-induced 990-nm ΔA at 77 K is increased under oxidizing conditions (addition of ferricyanide) and upon addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p). At 21°C, flash excitation of chloroplasts or of PS II particles induces only a very small ΔA at 990 nm, even when this is measured with a 100-ns time resolution or when the material is preilluminated. In both materials, however, a large flash-induced ΔA takes place when various lipophilic anions are added. After a flash the signal rises in less than 100 μs and its decay varies with experimental conditions; the decay is strongly accelerated by benzidine. The difference spectrum measured in PS II particles includes a broad peak around 990 nm and a bleaching around 490 nm. These absorption changes are attributed to a carotenoid radical cation formed at the PS II reaction center. It is estimated that in the presence of lipophilic anions at room temperature, one cation can be formed by a single flash in 80% of the reaction centers. At cryogenic temperature approx. 8% of the PS II reaction centers can oxidize a carotenoid after a single flash.  相似文献   

19.
J. Barber  G.F.W. Searle  C.J. Tredwell 《BBA》1978,501(2):174-182
The MgCl2-induced chlorophyll fluorescence yield changes in broken chloroplasts, suspended in a cation-free medium, treated with 3,-(3′,4′-dichlorophenyl)-1,1-dimethylurea and pre-illuminated, has been investigated on a picosecond time scale. Chloroplasts in the low fluorescing state showed a fluorescence decay law of the form exp ?At12, where A was found to be 0.052 ps?12, and may be attributed to the rate of spillover from Photosystem II to Photosystem I. Addition of 10 mM MgCl2 produced a 50% increase in the steady-state fluorescence quantum yield and caused a marked decrease in the decay rate. The fluorescence decay law was found to be predominantly exponential with a 1/e lifetime of 1.6 ns. These results support the hypothesis that cation-induced changes in the fluorescence yield of chlorophyll are related to the variations in the rate of energy transfer from Photosystem II to Photosystem I, rather than to changes in the partitioning of absorbed quanta between the two systems.  相似文献   

20.
Patrick M. Kelley  S. Izawa 《BBA》1978,502(2):198-210
1. Chloroplasts washed with Cl?-free, low-salt media (pH 8) containing EDTA, show virtually no DCMU-insensitive silicomolybdate reduction. The activity is readily restored when 10 mM Cl? is added to the reaction mixture. Very similar results were obtained with the other Photosystem II electron acceptor 2,5-dimethylquinone (with dibromothymoquinone), with the Photosystem I electron acceptor FMN, and also with ferricyanide which accepts electrons from both photosystems.2. Strong Cl?-dependence of Hill activity was observed invariably at all pH values tested (5.5–8.3) and in chloroplasts from three different plants: spinach, tobacco and corn (mesophyll).3. In the absence of added Cl? the functionally Cl?-depleted chloroplasts are able to oxidize, through Photosystem II, artificial reductants such as catechol, diphenylcarbazide, ascorbate and H2O2 at rates which are 4–12 times faster than the rate of the residual Hill reaction.4. The Cl?-concentration dependence of Hill activity with dimethylquinone as an electron acceptor is kinetically consistent with the typical enzyme activation mechanism: E(inactive) + Cl?ag E · Cl? (active), and the apparent activation constant (0.9 mM at pH 7.2) is unchanged by chloroplast fragmentation.5. The initial phase of the development of inhibition of water oxidation in Cl?-depleted chloroplasts during the dark incubation with NH2OH (12 H2SO4) is 5 times slower when the incubation medium contains Cl? than when the medium contains NH2OH alone or NH2OH plus acetate ion. (Acetate is shown to be ineffective in stimulating O2 evolution.)6. We conclude that the Cl?-requiring step is one which is specifically associated with the water-splitting reaction, and suggests that Cl? probably acts as a cofactor (ligand) of the NH2OH-sensitive, Mn-containing O2-evolving enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号