首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested whether biogeographic patterns characteristic for biological communities can also apply to populations and investigated geographic patterns of variation in abundance of ectoparasites (fleas and mites) collected from bodies of their small mammalian hosts (rodents and shrews) in the Palearctic at continental, regional and local scales. We asked whether (i) there is a relationship between latitude and abundance and (ii) similarity in abundance follows a distance decay pattern or it is better explained by variation in extrinsic biotic and abiotic factors. We analysed the effect of latitude on mean intraspecific abundance using general linear models including proportional abundance of its principal host as an additional predictor variable. Then, we examined the relative effect of geographic distance, biotic and abiotic dissimilarities among regions, subregions or localities on the intraspecific dissimilarity in abundance among regions, subregions or localities using Generalized Dissimilarity Modelling. We found no relationship between latitude and intraspecific flea or mite abundance. In both taxa, environmental dissimilarity explained the largest part of the deviance of spatial variation in abundance, whereas the effect of the dissimilarity in the principal host abundance was of secondary importance and the effect of geographic distance was minor. These patterns were generally consistent across the three spatial scales, although environmental variation and dissimilarity in principal host abundance were equally important at the local scale in fleas but not in mites. We conclude that biogeographic patterns related to latitude and geographic distance do not apply to spatial variation of ectoparasite abundance. Instead, the geographic distribution of abundance in arthropod ectoparasites depends on their responses, mainly to the off-host environment and to a lesser extent the abundance of their principal hosts.  相似文献   

2.
Human alterations of the habitat may interfere with the natural processes that determine spatial patterns of species abundance. We examine the geographical position hypothesis and the agricultural transformation hypothesis to explain spatial patterns in the abundance of seedeater species (Sporophila spp.) in the southern Neotropics. The geographical position hypothesis predicts decreasing abundance with increasing distance from the center to the edge of a species' geographical range, and the agricultural transformation hypothesis predicts changing abundance as a response of variations in agricultural intensity. Bird abundance and the proportion of agricultural land were estimated for 16 transects covering 500 km along a gradient of both increasing agricultural intensity and increasing distance from the center of the species' geographical ranges. We found no evidence of distance effects on seedeater abundance. Responses to agricultural intensity varied among species. Neither the geographical position nor the agricultural transformation seemed to explain the pattern of abundance of Double-collared seedeaters (S. caerulescens). Agricultural intensity accounted for 63% and 99% of the spatial variation in the abundance of Dark-throated (S. ruficollis) and Tawny-bellied (S. hypoxantha) seedeaters, supporting the agricultural transformation hypothesis. The Dark-throated seedeater seem to be more tolerant to agricultural transformation than the Tawny-bellied seedeater, as they were not recorded in areas with more than 60% and 20% of agricultural lands, respectively. Our results indicate that the Dark-throated seedeater and the Tawny-bellied seedeater will most likely face (or may be already facing) a reduction in the southern part of their geographical range due to habitat loss to agriculture.  相似文献   

3.
Aim To test the macroecological principle that a positive relationship exists between local abundance and geographic range size for tree communities in the tropical dry forest. Location Two tropical dry forest (TDF) regions on the Pacific coast of Mexico: one near Chamela, Jalisco; the other near Huatulco, Oaxaca. Methods We recorded species presence and relative abundance of trees and lianas from over 40 locales in each of the study regions using transects across an elevational gradient. We then compared the field data with occurrence data from national and online databases to examine how local patterns of abundance relate to putative geographic range areas and latitudinal breadth. Results We found no significant correlation between abundance and range size. Overall, many more locally abundant species had small ranges than large ones. We found that most species occupy the majority of the TDF range north of Colombia, and those species present in South America occupy the majority of that continent’s TDF range as well. This pattern was independent of local abundance. We also found no relationship between range size and local niche breadth as measured by elevation, or between local abundance and distance to the range centre. Main conclusions The macroecological tenet that posits a positive correlation between local abundance and geographic range size does not appear to hold for TDF trees. The finding that many locally abundant species had narrow ranges also suggests that dry forest endemics may be particularly well adapted to local conditions and make important contributions to community structure. We hypothesize that the absence of abundant species with large ranges is due to opposing environmental constraints that prevent a species from thriving everywhere.  相似文献   

4.
Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north–south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement.  相似文献   

5.
Contrary to species occurrence, little is known about the determinants of spatial patterns of intraspecific variation in abundance, particularly for parasitic organisms. In this study, we provide a multi‐faceted overview of spatial patterns in parasite abundance and examine several potential underlying processes. We first tested for a latitudinal gradient in local abundance of the regionally most common parasite species and whether these species achieve higher abundances at the same localities (shared hot spots of infection). Secondly, we tested whether intraspecific similarity in local abundance between sites follows a spatial distance decay pattern or is better explained by variation in extrinsic biotic and abiotic factors between localities related to local parasite transmission success. We examined the infection landscape of a model fish host system (common and upland bullies, genus Gobiomorphus: Eleotridae) across its entire distributional range. We applied general linear models to test the effect of latitude on each species local abundance independently, including the abundance of each co‐infecting species as another predictor. We computed multiple regressions on distance matrices among localities based on abundance of each of the four most common trematode species, as well as for geographic distance, biotic and abiotic distinctness of the localities. Our results showed that the most widely distributed parasites of bullies also achieve the highest mean local abundances, following the abundance – occupancy relationship. Variation in local abundance of any focal parasite species was independent of latitude, the abundance of co‐occurring species and spatial distance or disparity in biotic attributes between localities. For only one parasite species, similarity of abundance between sites covaried with the extent of abiotic differences between sites. The lack of association between hot spots of infection for co‐occurring species reinforces the geographic mosaic scenario in which hosts and parasites coevolve by suggesting non‐deterministic, species‐specific variation in parasite abundance across space.  相似文献   

6.
Species may often exhibit geographic variation in population genetic structure due to contemporary and historical variation in population size and gene flow. Here, we test the predictions that populations on the margins of a species' distribution contain less genetic variation and are more differentiated than populations towards the core of the range by comparing patterns of genetic variation at five microsatellite loci between disjunct and core populations of the perennial, allohexaploid herb Geum triflorum. We sampled nine populations isolated on alvar habitat within the eastern Great Lakes region in North America, habitats that include disjunct populations of several plant species, and compared these to 16 populations sampled from prairie habitat throughout the core of the species' distribution in midwestern Canada and the USA. Alvar populations exhibited much lower within-population diversity and contained only a subset of alleles found in prairie populations. We detected isolation by distance across the species' range and within alvar and prairie regions separately. As predicted, genetic differentiation was higher among alvar populations than among prairie populations, even after controlling for the geographic distance between sampled populations. Low diversity and high differentiation can be accounted for by the greater contemporary spatial isolation of alvar populations. However, the genetic structure of alvar populations may also have been influenced by postglacial range expansion and contraction. Our results are consistent with alvar populations being founded during an expansion of prairie habitat during the warmer, hypsithermal period approximately 5000 bp and subsequently becoming stranded on isolated alvar habitat as the climate grew cooler and wetter.  相似文献   

7.
Climatic conditions and landscape features often strongly affect species' local distribution patterns, dispersal, reproduction and survival and may therefore have considerable impacts on species' fine-scale spatial genetic structure (SGS). In this study, we demonstrate the efficacy of combining fine-scale SGS analyses with isotropic and anisotropic spatial autocorrelation techniques to infer the impact of wind patterns on plant dispersal processes. We genotyped 1304 Azorella selago (Apiaceae) specimens, a wind-pollinated and wind-dispersed plant, from four populations distributed across sub-Antarctic Marion Island. SGS was variable with Sp values ranging from 0.001 to 0.014, suggesting notable variability in dispersal distance and wind velocities between sites. Nonetheless, the data supported previous hypotheses of a strong NW-SE gradient in wind strength across the island. Anisotropic autocorrelation analyses further suggested that dispersal is strongly directional, but varying between sites depending on the local prevailing winds. Despite the high frequency of gale-force winds on Marion Island, gene dispersal distance estimates (σ) were surprisingly low (<10 m), most probably because of a low pollen dispersal efficiency. An SGS approach in association with isotropic and anisotropic analyses provides a powerful means to assess the relative influence of abiotic factors on dispersal and allow inferences that would not be possible without this combined approach.  相似文献   

8.
The abundance of a species is not constant across its geographical range; it has often been assumed to decrease from the centre of a species’ range toward its margins. The central assumption of this “favourable centre” model is tested for the first time with parasites, using different species of helminth parasites exploiting fish as definitive hosts. Data on prevalence (percentage of hosts that are infected) and abundance (mean no. parasites per host) were compiled for 8 helminth species occurring in 23 populations of yellow perch Perca flavescens, from continental North America. For each parasite species, correlations were computed between latitude and both local prevalence and abundance values. In addition, the relationships between the relative prevalence or abundance in one locality and the distance between that locality and the one where the maximum value was reported, were assessed separately for each species to determine whether abundance tends to decrease away from the presumed centre of the range, where it peaks. For both the cestode Proteocephalus pearsei and the acanthocephalan Leptorhynchoides thecatus, there was a positive relationship between prevalence or abundance and the latitude of the sampled population. There was also a significant negative relationship between relative prevalence and the distance from the locality showing the maximum value in P. pearsei, but no such pattern was observed for the other 7 parasite species. Since this single significant decrease in prevalence with increasing distance from the peak value may be confounded by a latitudinal gradient, it appears that the distribution of abundance in parasites of perch does not follow the favourable centre model. This means that the environmental variables affecting the density of parasites (host availability, abiotic conditions) do not show pronounced spatial autocorrelation, with nearby sites not necessarily providing more similar conditions for the growth of parasite populations than distant sites.  相似文献   

9.
Species' borders: a unifying theme in ecology   总被引:6,自引:0,他引:6  
Biologists have long been fascinated by species' borders, and with good reason. Understanding the ecological and evolutionary dynamics of species' borders may prove to be the key that unlocks new understanding across a wide range of biological phenomena. After all, geographic range limits are a point of entry into understanding the ecological niche and threshold responses to environmental change. Elucidating patterns of gene flow to, and returning from, peripheral populations can provide important insights into the nature of adaptation, speciation and coevolution. Species' borders form natural laboratories for the study of the spatial structure of species interactions. Comparative studies from the center to the margin of species' ranges allow us to explore species' demographic responses along gradients of increasing environmental stress. Range dynamics further permit investigation into invasion dynamics and represent bellwethers for a changing climate. This set of papers explores ecological and evolutionary dynamics of species' borders from diverse empirical and theoretical perspectives.  相似文献   

10.
In species acting as hosts of infectious agents, the extent of gene flow between populations is of particular interest because the expansion of different infectious diseases is usually related to the dispersal of the host. We have estimated levels of gene flow among populations of the sigmodontine rodent Oligoryzomys flavescens, in which high titers of antibodies have been detected for a Hantavirus in Argentina that produces a severe pulmonary syndrome. Enzyme polymorphism was studied by means of starch gel electrophoresis in 10 populations from the area where human cases of Hantavirus have occurred. Genetic differentiation between populations was calculated from FST values with the equation Nm = [(1/FST−1]/4. To assess the relative importance of current gene flow and historical associations between populations, the relationship of population pairwise log Nm and log geographic distance was examined. Low FST (mean = 0.038) and high Nm (15.27) values suggest high levels of gene flow among populations. The lack of an isolation by distance pattern would indicate that this species has recently colonized the area. The northernmost population, located on the margin of a great river, shows very high levels of gene flow with the downstream populations despite the large geographic distances. Passive transport of animals down the river by floating plants would promote unidirectional gene flow. This fact and the highest mean heterozygosity of that northernmost population suggest it is a center of dispersal within the species' range. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Castric V  Bernatchez L 《Genetics》2003,163(3):983-996
Geographic patterns of genetic diversity depend on a species' demographic properties in a given habitat, which may change over time. The rates at which patterns of diversity respond to changes in demographic properties and approach equilibrium are therefore pivotal in our understanding of spatial patterns of diversity. The brook charr Salvelinus fontinalis is a coastal fish exhibiting limited marine movements, such that a stable one-dimensional isolation-by-distance (IBD) pattern should be observed over the whole range. Its range, however, recently shifted northward such that northern populations may still be in the process of reaching equilibrium. We investigated variation in IBD patterns, genetic divergence, and allelic richness at six microsatellite markers in 2087 anadromous brook charr from 59 rivers along the most likely postglacial colonization route. We observed a decrease in allelic richness, together with an increase in differentiation and a decrease in IBD in the most recently colonized northern populations, as expected following recent colonization. Contrary to expectation, however, similar patterns were also observed at the southernmost part of the range, despite the fact that these populations are not considered to be newly colonized. We propose that the loss of dispersal capabilities associated with anadromy may have caused the southernmost populations to evolve relatively independently of one another. This study thus demonstrated that changes in a species' geographic range and dispersal capabilities may contribute to shaping geographic patterns of genetic diversity.  相似文献   

12.
The distribution of genetic diversity within and among populations in relation to species’ geographic ranges is important to understanding processes of evolution, speciation, and biogeography. One hypothesis predicts that natural populations at geographic range margins will have lower genetic diversity relative to those located centrally in species’ distributions owing to a link between geographic and environmental marginality; alternatively, genetic variation may be unrelated with geographic marginality via decoupling of geographic and environmental marginality. We investigate the predictivity of geographic patterns of genetic variation based on geographic and environmental marginality using published genetic diversity data for 40 species (insects, plants, birds, mammals, worms). Only about half of species showed positive relationships between geographic and environmental marginality. Three analyses (sign test, multiple linear regression, and meta‐analysis of correlation effect sizes) showed a negative relationship between genetic diversity and distance to environmental niche centroid, but no consistent relationship of genetic diversity with distance to geographic range center.  相似文献   

13.
Estuarine organisms grow in highly heterogeneous habitats, and their genetic differentiation is driven by selective and neutral processes as well as population colonization history. However, the relative importance of the processes that underlie genetic structure is still puzzling. Scirpus mariqueter is a perennial grass almost limited in the Changjiang River estuary and its adjacent Qiantang River estuary. Here, using amplified fragment length polymorphism (AFLP), a moderate‐high level of genetic differentiation among populations (range FST: 0.0310–0.3325) was showed despite large ongoing dispersal. FLOCK assigned all individuals to 13 clusters and revealed a complex genetic structure. Some genetic clusters were limited in peripheries compared with very mixing constitution in center populations, suggesting local adaptation was more likely to occur in peripheral populations. 21 candidate outliers under positive selection were detected, and further, the differentiation patterns correlated with geographic distance, salinity difference, and colonization history were analyzed with or without the outliers. Combined results of AMOVA and IBD based on different dataset, it was found that the effects of geographic distance and population colonization history on isolation seemed to be promoted by divergent selection. However, none‐liner IBE pattern indicates the effects of salinity were overwhelmed by spatial distance or other ecological processes in certain areas and also suggests that salinity was not the only selective factor driving population differentiation. These results together indicate that geographic distance, salinity difference, and colonization history co‐contributed in shaping the genetic structure of S. mariqueter and that their relative importance was correlated with spatial scale and environment gradient.  相似文献   

14.
Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.  相似文献   

15.
The rock-restricted cichlid fish assemblages of Lake Malawi exhibit high spatial diversity in their species composition and relative abundance. However the extent to which this is due to the effects of local environmental differences, dispersal limitation of constituent taxa, and the assignment of allopatric populations to species is uncertain. We examined the factors associated with diversity within an assemblage from the north-western shores, encompassing a spatial scale of 170 km. For both the whole assemblage, and all constituent species-complexes, spatial variance in community structure was significantly dependent upon both geographic distances between locations and local habitat variables. Pronounced effects of distance indicate limited dispersal, but our results also show that that the spatial variance explained by geographic distance alone was strongly linked to proportion of allopatric populations within a species-complex with species status. Thus, the taxonomic status of allopatric populations underlies, at least partially, the biogeographical structure of this assemblage. Substrate composition and habitat depth were also significant determinants of community structure, although spatial variance attributed to these variables was less than that associated with distance alone. Substantial unexplained variance may be a consequence of the effects of unmeasured habitat variables, high ecological similarity between co-occurring species, stochastic influences on population abundance, and the effects of local adaptation. Despite low spatial variance explained by the assessed environmental variables, significant environmental influence on cichlid assemblage structure across a wide spatial scale indicates that even slight future environmental changes may have the capacity to significantly alter species composition.  相似文献   

16.
Compositional dissimilarity as a robust measure of ecological distance   总被引:23,自引:4,他引:19  
The robustness of quantitative measures of compositional dissimilarity between sites was evaluated using extensive computer simulations of species' abundance patterns over one and two dimensional configurations of sample sites in ecological space. Robustness was equated with the strength over a range of models, of the linear and monotonic (rank-order) relationship between the compositional dissimilarities and the corresponding Euclidean distances between sites measured in the ecological space. The range of models reflected different assumptions about species' response curve shape, sampling pattern of sites, noise level of the data, species' interactions, trends in total site abundance, and beta diversity of gradients.The Kulczynski, Bray-Curtis and Relativized Manhattan measures were found to have not only a robust monotonic relationship with ecological distance, but also a robust linear (proportional) relationship until ecological distances became large. Less robust measures included Chord distance, Kendall's coefficient, Chisquared distance, Manhattan distance, and Euclidean distance.A new ordination method, hybrid multidimensional scaling (HMDS), is introduced that combines metric and nonmetric criteria, and so takes advantage of the particular properties of robust dissimilarity measures such as the Kulczynski measure.We thank M. P. Austin for encouraging this study, and I. C. Prentice, E. Van der Maarel, and an anonymous reviewer for helpful comments. E. M. Adomeit provided technical assistance.  相似文献   

17.
中国栗疫病菌群体遗传结构的空间自相关性分析   总被引:6,自引:0,他引:6  
应用空间自相关分析方法对中国栗疫病菌17个居群RAPD遗传变异的空间结构进行研究,以探讨栗疫病菌居群遗传变异的分布特征及其形成机制。结果表明:中国栗疫病菌居群缺乏空间结构,绝大多数RAPD位点变异为随机分布的空间模式,但部分位点表现出渐变、斑块和双向渐变的非随机分布模式,又显示了一定的空间结构。推测其形成原因可能是长距离的基因流、人类活动、地理隔离以及栗疫病菌本身的繁殖特性综合作用的结果,并依据部分位点呈单向渐变的模式推测西南地区为中国栗疫病菌的起源中心。  相似文献   

18.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

19.
Triatoma infestans Klug (Hemiptera: Reduviidae) populations were sampled in various localities throughout most of the species' geographic range of distribution in Argentina, Bolivia, Paraguay and Peru. In order to contribute to understanding of the diversity and population structure of this major vector of Chagas' disease, cuticular hydrocarbon (CHC) profiles were analysed by capillary gas chromatography and variations evaluated by statistical methods of classification and ordination. High levels of intrapopulation variation were detected, along with low levels of variability among populations. Based on relative amounts of the major odd-numbered straight-chain hydrocarbons n-C27 to n-C33, two hydrocarbon phenotypes were evident, unequally distributed along the species' geographic range. Analysis of CHC patterns showed that T. infestans populations segregate into two major groups consisting of an Andean group, which comprises specimens from Peru and most parts of Bolivia, and a non-Andean group, which includes all specimens from Argentina and Paraguay, together with those from Tarija (Bolivia). Pyrethroid-resistant and -susceptible specimens were differentiated based on relative amounts of some straight and monomethyl-branched hydrocarbon components.  相似文献   

20.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号