首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A line with the mosaic expression of the white+ transgene was obtained by inducing transposition of the AR4-24P[white, rosy] transposon and was used for the second round of induction. As a result, 57 lines with the mosaic eye pigmentation were obtained. In situ hybridization and Southern blotting showed that genomic DNA fragments flanking AR4-24 were, in some cases, transposed together with the transposon. A spontaneous loss of these fragments resulted in reversion to the wild-type phenotype. The mosaic eye pigmentation in a line that carried the AR4-24 transposon flanked with the same fragments in region 24D1-2 was not affected by the Su(var)3-6 gene modifying position effect variegation (PEV). Other PEV modifiers, Su(var)3-9 and Su(var)2-5, had only a slight effect on PEV; Su(var)3-7 restored the wild-type phenotype. The genomic fragments captured by the transposon may contain DNA sequences that autonomously induce mosaic PEV of the white gene.  相似文献   

2.
The white gene within the transposon A(R)4-24P[white,rosy] inserted at cytological location 24D1-2 in the euchromatic portion of the Drosophila melanogaster genome exhibits a mosaic pattern of expression which is modified by temperature and Y-chromosome number, as in cases of classical position-effect variegation (PEV). The eye colour of the flies in this variegated stock remains mosaic in the presence of the PEV modifier Su(var)3-6, slightly less so with Su(var)3-9 and Su(var)2-5, and full suppression of variegation occurs in the presence of Su(var)3-7. We have induced further transposition of A(R)4-24 and isolated two mosaic stocks with this transgene at new cytological locations. In these stocks, the A(R)4-24 transposon was flanked by the same genomic DNA fragments as in the original location. Spontaneous loss of these fragments leads to reversion of the variegated eye colour to wild-type. We suggest that the flanking DNA fragments from 24D1-2 are capable of inducing position-effect variegation without any association with centromeric heterochromatin. In situ hybridisation and Southern analysis demonstrate that the 5' flanking genomic fragment contains repeated sequences which are abundantly present in heterochromatin.  相似文献   

3.
The Drosophila mod(mdg4) gene products counteract heterochromatin-mediated silencing of the white gene and help activate genes of the bithorax complex. They also regulate the insulator activity of the gypsy transposon when gypsy inserts between an enhancer and promoter. The Su(Hw) protein is required for gypsy-mediated insulation, and the Mod(mdg4)-67.2 protein binds to Su(Hw). The aim of this study was to determine whether Mod(mdg4)-67.2 is a coinsulator that helps Su(Hw) block enhancers or a facilitator of activation that is inhibited by Su(Hw). Here we provide evidence that Mod(mdg4)-67.2 acts as a coinsulator by showing that some loss-of-function mod(mdg4) mutations decrease enhancer blocking by a gypsy insert in the cut gene. We find that the C terminus of Mod(mdg4)-67.2 binds in vitro to a region of Su(Hw) that is required for insulation, while the N terminus mediates self-association. The N terminus of Mod(mdg4)-67.2 also interacts with the Chip protein, which facilitates activation of cut. Mod(mdg4)-67.2 truncated in the C terminus interferes in a dominant-negative fashion with insulation in cut but does not significantly affect heterochromatin-mediated silencing of white. We infer that multiple contacts between Su(Hw) and a Mod(mdg4)-67.2 multimer are required for insulation. We theorize that Mod(mdg4)-67.2 usually aids gene activation but can also act as a coinsulator by helping Su(Hw) trap facilitators of activation, such as the Chip protein.  相似文献   

4.
F Cléard  M Delattre    P Spierer 《The EMBO journal》1997,16(17):5280-5288
An increase in the dose of the Su(var)3-7 locus of Drosophila melanogaster enhances the genomic silencing of position-effect variegation caused by centromeric heterochromatin. Here we show that the product of Su(var)3-7 is a nuclear protein which associates with pericentromeric heterochromatin at interphase, whether on diploid chromosomes from embryonic nuclei or on polytene chromosomes from larval salivary glands. The protein also associates with the partially heterochromatic chromosome 4. As these phenotypes and localizations resemble those described by others for the Su(var)2-5 locus and its heterochromatin-associated protein HP1, the presumed co-operation of the two proteins was tested further. The effect of the dose of Su(var)3-7 on silencing of a number of variegating rearrangements and insertions is strikingly similar to the effect of the dose of Su(var)2-5 reported by others. In addition, the two loci interact genetically, and the two proteins co-immunoprecipitate from nuclear extracts. The results suggest that SU(VAR)3-7 and HP1 co-operate in building the genomic silencing associated with heterochromatin.  相似文献   

5.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

6.
7.
8.
A dominant restriction allele, Akvr-1r, from California wild mice (Mus musculus domesticus) confers resistance to exogenous ecotropic murine leukemia virus (MuLV) infection. The presence of an ecotropic MuLV envelope-related glycoprotein in uninfected virus-resistant cells suggests that viral interference is a possible mechanism for this resistance. We molecularly cloned the ecotropic MuLV envelope-related sequence from the genomic DNA of a wild mouse homozygous for the Akvr-1r locus. The cloned provirus was defective and contained a C-terminal end of the pol gene, a complete envelope gene, and a 3' long terminal repeat. The presence of this provirus was directly correlated with Akvr-1r-mediated virus resistance in cell cultures and hybrid mice. The Akvr-1r provirus restriction map and partial DNA sequence were identical to those of the Fv-4r allele, an ecotropic MuLV resistance locus from Japanese feral mice (M. musculus molossinus), which was previously shown to be allelic with the Akvr-1r gene. The 3' host flanking sequences of Fv-4r and Akvr-1r also had identical restriction maps. These findings indicate that Akvr-1r and Fv-4r are the same gene. It was probably acquired by interbreeding of these feral species in recent times. Conservation of this locus might be favored by the useful function that it performs in protection against ecotropic MuLV infection endemic in both populations of wild mice.  相似文献   

9.
10.
In Drosophila melanogaster, the hobo transposable element is responsible for a hybrid dysgenesis syndrome. It appears in the germline of progenies from crosses between females devoid of hobo elements (E) and males bearing active hobo elements (H). In the HE system, permissivity is the ability of females to permit hobo activity in their progeny when they have been crossed with H males. Permissivity displays both intra- and inter-strain variability and decreases with the age of the females. Such characteristics are reminiscent of those for the reactivity in the IR system. The reactivity is the ability of R females (devoid of I factors) to permit activity of the I LINE retrotransposon in the F1 females resulting from crosses with I males (bearing I factors). Here we investigated permissivity properties in the HE system related to reactivity in the IR system. Previously it had been shown that reactivity increases with the number of Su(var)3-9 genes, which increases chromatin compaction near heterochromatin. Using the same lines, we show that permissivity increases with the number of Su(var)3-9 genes. To investigate the impact of chromatin compaction on permissivity we have tested the polymorphism of position-effect variegation (PEV) on the white(mottled4) locus in RE strains. Our results suggest a model of regulation in which permissivity could depend on the chromatin state and on the hobo vestigial sequences.  相似文献   

11.
The Sulfur gene of tobacco is nuclearly encoded. A Su allele at this locus acts as a dominant semilethal mutation and causes reduced accumulation of chlorophyll, resulting in a yellow color in the plant. An engineered transposon tagging system, based upon the maize element Ac/Ds, was used to mutate the gene. High frequency of transposon excision from the Su locus produced variegated sectors. Plants regenerated from the variegated sector exhibited a similar variegated phenotype. Genetic analyses showed that the variegation was always associated with the transposase construct and the transposon was linked to the Su locus. Sequences surrounding the transposon were isolated, and five revertant sectors possessed typical direct repeats following Ds excisions. These genetic and molecular data are consistent with the tagging of the Su allele by the transposon.  相似文献   

12.
It has recently been demonstrated that activity of the essential JIL-1 histone H3S10 kinase is a major regulator of chromatin structure and that it functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of JIL-1 kinase activity, the major heterochromatin markers histone H3K9me2 and HP1 spread in tandem to ectopic locations on the chromosome arms. In this study, we show that the lethality as well as some of the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-9 gene. This effect was observed with three different alleles of Su(var)3-9, strongly suggesting it is specific to Su(var)3-9 and not to second site modifiers. This is in contrast to similar experiments performed with alleles of the Su(var)2-5 gene that codes for HP1 in Drosophila where no genetic interactions were detectable between JIL-1 and Su(var)2-5. Taken together, these findings indicate that while Su(var)3-9 histone methyltransferase activity is a major factor in the lethality and chromatin structure perturbations associated with loss of the JIL-1 histone H3S10 kinase, these effects are likely to be uncoupled from HP1.  相似文献   

13.
We examined the genetic, morphological, and molecular effects of position effect variegation inDrosophila, and the effects of mutations that either suppress [Su(var)] or enhance [E(var)] this phenomenon. All eightSu(var) mutations examined strongly suppress the inactivation of variegating alleles of the genes white [In(l) w m4 ], brown [In (2R)bw VDe2 ] and Stubble [T(2;3)Sb V ]. TheE(var) mutation enhances variegation of these loci. The chromosomal region 3C-E (26 bands) which includes the white locus is usually packaged as heterochromatin in salivary glands of the variegating strainw m4 . Addition of any of theSu(var) mutations restores a more euchromatic morphology to this region. In situ hybridization to polytene chromosomes and DNA blot analyses of gene copy number demonstrate that the DNA of thew + gene is less accessible to its probe in the variegatingw m4 strain than it is in the wildtype or variegation-suppressed strains. Blot analysis of larval salivary gland DNA indicates that the white gene copy number does not vary among the strains. Hence, the differences in binding of thew + gene probe in the variegating and variegation-suppressed strains reflect differences in chromosomal packaging rather than alterations in gene number. The effects of variegation and theSu(var) mutations on chromatin structure were analyzed further by DNAse I digestion and DNA blot hybridization. In contrast to their dramatic effects on chromosomal morphology and gene expression, theSu(var) mutations had negligible effects on nuclease sensitivity of the white gene chromatin. We suggest that the changes in gene expression resulting from position effect variegation and the action of theSu(var) mutations involve alterations in chromosomal packaging.  相似文献   

14.
Genes at the M locus in flax ( Linum usitatissimum ) that confer resistance to flax rust ( Melampsora lini ) occur in complex haplotypes containing up to 15 related genes or gene fragments. We have cloned two additional functional resistance genes at this locus, M1 and M3 , by transposon tagging and candidate gene approaches, and investigated the genetic relationships between four genes ( M , M1 , M3 and M4 ) by recombination analysis. M1 and M3 , like M , are members of the nucleotide binding site, leucine-rich repeat (NBS-LRR) family. Comparisons of the predicted M1 and M3 amino acid sequences with M and L6 reveal that: (i) M1 contains four additional LRRs, probably as a result of an unequal crossover event between duplicated regions; (ii) M1 shares large segments of exact identity with M and M3, indicative of intragenic recombination events; and (iii) a large number of amino acid differences are scattered throughout the M, M1 and M3 proteins. Recombination analysis (here and in previous studies) has revealed that M readily recombines with M1 , M3 and M4 , whereas these three genes fail to recombine despite large family sizes (>5800) in two test-cross families, suggesting that they may occupy allelic positions in the gene cluster. Several restriction fragment length polymorphism markers within or near the M locus were mapped with respect to seven crossover events between M and M1 . The results of this and previous studies provide evidence of structural differences between: (i) homoeologous loci in the different genomes of flax; (ii) different haplotypes at the M locus; (iii) different resistance genes in the M group; and (iv) the flanking regions downstream of M locus resistance genes.  相似文献   

15.
16.
17.
M. Simonelig  K. Elliott  A. Mitchelson    K. O''Hare 《Genetics》1996,142(4):1225-1235
The Su(f) protein of Drosophila melanogaster shares extensive homologies with proteins from yeast (RNA14) and man (77 kD subunit of cleavage stimulation factor) that are required for 3' end processing of mRNA. These homologies suggest that su(f) is involved in mRNA 3' end formation and that some aspects of this process are conserved throughout eukaryotes. We have investigated the genetic and molecular complexity of the su(f) locus. The su(f) gene is transcribed to produce three RNAs and could encode two proteins. Using constructs that contain different parts of the locus, we show that only the larger predicted gene product of 84 kD is required for the wild-type function of su(f). Some lethal alleles of su(f) complement to produce viable combinations. The structures of complementing and noncomplementing su(f) alleles indicate that 84-kD Su(f) proteins mutated in different domains can act in combination for partial su(f) function. Our results suggest protein-protein interaction between or within wild-type Su(f) molecules.  相似文献   

18.
Dvorak J  Deal KR  Luo MC 《Genetics》2006,174(1):17-27
Pairing between wheat (Triticum turgidum and T. aestivum) homeologous chromosomes is prevented by the expression of the Ph1 locus on the long arm of chromosome 5B. The genome of Aegilops speltoides suppresses Ph1 expression in wheat x Ae. speltoides hybrids. Suppressors with major effects were mapped as Mendelian loci on the long arms of Ae. speltoides chromosomes 3S and 7S. The chromosome 3S locus was designated Su1-Ph1 and the chromosome 7S locus was designated Su2-Ph1. A QTL with a minor effect was mapped on the short arm of chromosome 5S and was designated QPh.ucd-5S. The expression of Su1-Ph1 and Su2-Ph1 increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids by 8.4 and 5.8 chiasmata/cell, respectively. Su1-Ph1 was completely epistatic to Su2-Ph1, and the two genes acting together increased homeologous chromosome pairing in T. aestivum x Ae. speltoides hybrids to the same level as Su1-Ph1 acting alone. QPh.ucd-5S expression increased homeologous chromosome pairing by 1.6 chiasmata/cell in T. aestivum x Ae. speltoides hybrids and was additive to the expression of Su2-Ph1. It is hypothesized that the products of Su1-Ph1 and Su2-Ph1 affect pairing between homeologous chromosomes by regulating the expression of Ph1 but the product of QPh.ucd-5S may primarily regulate recombination between homologous chromosomes.  相似文献   

19.
20.
Y. H. Inoue  T. Taira    M. T. Yamamoto 《Genetics》1988,119(4):903-912
A spontaneous white mutation, white-milky (wmky) of Drosophila simulans is moderately unstable and is associated with a 16-kb long DNA insertion into the white gene. wmky, which is an unstable mutation found in D. simulans, has been genetically analyzed. Among nine spontaneous, partial reversions toward wild type, five were white locus mutations. They are phenotypically different from each other and three show eye color sexual dimorphism indicating a failure of the dosage compensation mechanism. Two w locus mutations whose eye color appeared identical between males and females were also isolated. Of the other back-mutants, three were associated with a recessive suppressor of wmky and one was a semidominant suppressor. These suppressor loci are located on the third chromosome at map positions about 90 and 120, respectively. The suppressor mutations demonstrate specific effects on w locus mutations derived from wmky which lack in the gene dosage compensation. Somatic instability was detected at the frequency of 5.6 X 10(-4) in wmky flies heterozygous for the recessive suppressor and the frequency was increased 10-fold when the suppressor mutation was placed in a different genetic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号