首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.  相似文献   

2.
Huang J  Boerner RE 《Oecologia》2007,153(2):233-243
This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 μg/g) than in the B (45 μg/kg) and T + B (65 μg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site–treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant–soil interactions at different temporal scales.  相似文献   

3.
Mt. Teide (Tenerife, Spain) is a high volcanic island mountain with an unusually low tree line elevation (2000–2100 m). While searching for the causes of this tree line depression, we analysed the concentrations of total N, available P, and salt-exchangeable Ca, K and Mg in three soil horizons, and the foliar N, P, Ca, K and Mg concentrations in six abundant plant species (trees, shrubs, forbs) along a transect from 1400 (1600) to 3100 m a.s.l. The objective of the study was to detect altitudinal trends in soil and plant nutrient status below and above the tree line. For characterising elevational changes in microclimate and hydrology, we also conducted measurements of air and soil temperatures (Ta and Ts), atmospheric water vapour saturation deficit (D), potential evaporation (E) and soil moisture (θ) on 3–4 occasions along the transect.Ta and Ts did not linearly decrease with elevation but were highest at or immediately below the tree line and were relatively low in the closed Pinus canariensis forest at 1600 m. Ts reached maxima at about 70 °C near the tree line. The absence of a linear temperature decrease with elevation was caused by a stable temperature inversion at about 2000 m and by canopy shading in the forest canopy below the tree line. In June, the topsoil (10 cm) dried out almost completely between 1800 and 3100 m, but remained moist in the pine forest at 1600 m. This gradient reflects the transition from the montane cloud belt to the dry alpine belt higher upslope. The subsoil (30 cm) contained >30 vol% of soil water at all elevations even in June except for the uppermost site (3100 m). Potential evaporation increased with elevation despite a decrease in D. We assume that this is mainly due to the air pressure-dependent increase with elevation in the diffusion coefficient for water vapour in air.The concentrations of N and ‘available’ P (after Olsen) in the mineral topsoil were by far smaller than in alpine soils of other humid mountains which is thought to be a consequence of a very dry and biologically inactive topsoil in the semi-arid alpine belt of Mt. Teide. In contrast to many other mountains, foliar N, P and cation concentrations in the plants did not increase with elevation but either remained unchanged, or decreased as in the tree line species P. canariensis. Nevertheless, P. canariensis probably is not limited by nutrient deficiency at the tree line despite rather low N and P needle concentrations. Rather, drought and heat stress effects on seedling establishment are thought to be the causes of the tree line depression.  相似文献   

4.
Habitat fragmentation decreases plant population size and increases population isolation, as well as altering patterns of plant–animal interactions, all of which may reduce plant fitness. Here, we studied effects of habitat fragmentation (in terms of population size and isolation) and soil quality on the reproduction of two rare legume species, Genista anglica (13 populations) and Genista pilosa (14 populations), confined to remnants of acidic and nutrient‐poor Calluna heathlands. Single individuals of the Genista plants are impossible to distinguish; population size was therefore estimated according to the area occupied (referred to as population size hereafter). We collected soil samples in all heathland sites to determine content of soil water, C, N, P, Ca, K and Mg. In both species values of soil pH and C/N ratio, as well as content of soil P and base cations, reflected the highly acidic and nutrient‐poor environment of the heathlands. Population sizes were unrelated to soil quality. Although the two Genista species are similar in morphology and ecology, effects of explanatory variables on reproduction were largely inconsistent across species. In G. anglica, population size had a positive impact on all reproductive variables except germination rate, which, in contrast, was the only variable affected positively by population size in G. pilosa. In both species, mean total reproductive output, calculated as the product of total seed mass per shoot and total germination, increased with increasing water content and decreased with increasing P. In G. anglica, we found positive effects of the C/N ratio on all reproductive variables except mean single and total seed mass per shoot. In summary, in both species reproductive success per shoot decreased with increasing soil nutrient availability in the heathland sites. The infestation of two large populations of G. pilosa with the pre‐dispersal, seed‐predating weevil Apion compactum had no significant effect on reproduction of the populations.  相似文献   

5.
6.
Fertilization experiments in tropical forests have shown that litterfall increases in response to the addition of one or more soil nutrients. However, the relationship between soil nutrient availability and litterfall is poorly defined along natural soil fertility gradients, especially in tropical montane forests. Here, we measured litterfall for two years in five lower montane 1‐ha plots spanning a soil fertility and precipitation gradient in lower montane forest at Fortuna, Panama. Litterfall was also measured in a concurrent nitrogen fertilization experiment at one site. Repeated‐measures ANOVA was used to test for site (or treatment), year, and season effects on vegetative, reproductive and total litterfall. We predicted that total litterfall, and the ratio of reproductive to leaf litterfall, would increase with nutrient availability along the fertility gradient, and in response to nitrogen addition. We found that total annual litterfall varied substantially among 1‐ha plots (4.78 Mg/ha/yr to 7.96 Mg/ha/yr), and all but the most aseasonal plot showed significant seasonality in litterfall. However, litterfall accumulation did not track soil nutrient availability; instead forest growing on relatively infertile soil, but dominated by an ectomycorrhizal tree species, had the highest total litterfall accumulation. In the fertilization plots, significantly more total litter fell in nitrogen addition relative to control plots, but this increase in response to nitrogen (13%) was small compared to variation observed among 1‐ha plots. These results suggest that while litterfall at Fortuna is nutrient‐limited, compositional and functional turnover along the fertility gradient obscure any direct relationship between soil resource availability and canopy productivity.  相似文献   

7.
Nutrient distribution in a Swedish tree species experiment   总被引:2,自引:0,他引:2  
The influence of four tree species on the distribution of nutrients between different compartments of the ecosystem was examined. In a randomized block (n=3) experiment in south-western Sweden, Ca, Mg and K were determined as exchangeable amounts in the mineral soil and as total amounts in the O+A1 horizons (topsoil) and in the aboveground tree biomass. N contents were determined in all compartments as well as P contents of the aboveground tree biomass and the topsoil. The four tree species planted were: silver fir [Abies alba Mill.] (AA), grand fir [Abies grandis Lindl.] (AG), Norway spruce [Picea abies L. Karst.] (PA) and Japanese larch [Larix leptolepis (Sieb. och Zucc.) Endl.] (LL). At the age of 35–36 years, the total stemwood production of the most productive species, AG, was estimated at 471 m3 ha−1. In relation to AG, LL had produced 80%, PA 73% and AA 37%. The system totals [aboveground tree biomass total + topsoil total + exchangeable (Ca, Mg, K) or total (N) in the mineral soil] of Ca, K and N did not differ significantly at the 5% level between the investigated species. For Mg, the system total in LL was significantly higher than for the other species. There was an indication that LL and AA contained higher amounts of Ca, Mg, K and N in the topsoil but less in the biomass than did AG and PA (partly significant). In the mineral soil, there were no significant differences in the exchangeable pools of Ca and K, nor in the total amounts of N. The biomass nutrient concentrations generally decreased in the order: AA > PA > AG > LL. At stem or whole-tree harvest, the Ca export per biomass unit would more than double in the case of PA compared to LL. LL also contained less N in the biomass than the other species. However, the N content in the biomass did not differ between the most (AG) and the least (AA) productive species, although the production of dry weight biomass (standing + harvested) of AG had been twice that of AA. It is concluded that the nutrient budget of a managed forest may vary considerably depending on the choice of tree species.  相似文献   

8.
Mount Bloomfield has been shown to have several vegetation types, including medium stature forest on greywacke, small stature forest on serpentinized peridotite, and scrub and Gymnostoma woodland on dunite. The causes of the large physiognomic and floristic differences among these vegetation types have been investigated by soil chemical analyses, soil physical studies, and by a phytometer experiment involving the crop plant Zea mays. There was no relationship between maximum tree height and the soil chemical factors analysed (P, K, Ca, Mg, Ni) but there was a directly proportional relationship between maximum tree height and soil water retention. The phytometer experiment supported the idea that there is no acute soil toxicity in spite of the high soil Ni and Mg/Ca quotients recorded in this study. It is concluded that soil water retention, perhaps in combination with fire, is the major cause of stature differences among the vegetation types and together with soil chemistry is an important determinant of floristic composition.  相似文献   

9.
Soil properties and above-and belowground forest structure were studied across various topographies in a 20-year-oldPinus thunbergii Parl. plantation on Mt Tanakami, Japan. The soil properties and stand structure varied greatly with slope position fromridge top to valley floor. Soil thickness, fine soil content and soil moisture content were greater in lower slope positions. The amount of organic carbon in the forest floor was greater in upper slope positions. The organic carbon content in the mineral soil was slightly greater in lower slope positions. These changes in soil properties suggested an upslope decrease in decomposition rate and water and/or nutrient availability. The aboveground structure ofP. thunbergii was more developed at lower slope positions. The mean stem diameter, height and volume ofP. thunbergii increased downslope with decreasing tree density. However, fine root biomass increased greatly upslope. This inverse relationship between tree height and fine root biomass indicated morphological plasticity ofP. thunbergii in exploiting environmental heterogeneity. Variations in soil-plant interactions in the stand along various topographies caused spatial heterogeneity in the accumulation pattern of organic matter in plants and the soil.  相似文献   

10.
Grazing is a traditional grassland management technique and greatly alters ecosystem nutrient cycling. The effects of grazing intensity on the nutrient dynamics of soil and plants in grassland ecosystems remain uncertain, especially among microelements. A 2‐year field grazing experiment was conducted in a typical grassland with four grazing intensities (ungrazed control, light, moderate, and heavy grazing) in Inner Mongolia, China. Nutrient concentration was assessed in soil and three dominant plant species (Stipa krylovii, Leymus chinensis, and Cleistogenes squarrosa). Assessed quantities included four macroelements (carbon (C), nitrogen (N), phosphorus (P), and magnesium (Mg)) and four microelements (copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)). Soil total C, total N, total P, available N, and available P concentrations significantly increased with grazing intensity but soil Mg, Cu, Fe, Mn, Zn concentrations had no significant response. Plant C concentration decreased but plant N, P, Mg, Cu, Fe, Mn, and Zn concentrations significantly increased with grazing intensity. In soil, macroelement dynamics (i.e., C, N, and P) exhibited higher sensitivity with grazing intensity, conversely in plants, microelements were more sensitive. This result indicates macroelements and microelements in soil and plants had asymmetric responses with grazing intensity. The slopes of nutrient linear regression in C. squarrosa were higher than that of S. krylovii and L. chinensis, indicating that C. squarrosa had higher nutrient acquisition capacity and responded more rapidly to heavy grazing. These findings indicate that short‐term heavy grazing accelerates nutrient cycling of the soil–plant system in grassland ecosystems, elucidate the multiple nutrient dynamics of soil and plants with grazing intensity, and emphasize the important function of microelements in plant adaptation in grazing management.  相似文献   

11.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   

12.
Absence of fire is increasingly recognized as an important driver of soil nutrient budgets in Eucalyptus forest, especially in forests affected by premature Eucalyptus decline, due to the effects of soil nutrient accumulation on nutrient balances and forest community dynamics. In this study, we present a dataset of soil and foliar nutrient analyses, and vegetation measurements from a fire chronosequence survey in native E. delegatensis forest. Measured indices include total soil and extractable soil nitrogen (N), or phosphorus (P), soil organic carbon (C), soil acid‐phosphatase (PME) activity, foliar N and foliar P, and understorey and overstorey vegetation canopy height. We show that in some cases indices are strongly linked to time since fire (2–46 years). Time since fire correlated positively with foliar N, total and extractable soil N, soil organic C, and also soil PME activity; the latter an indicator of biotic P demand. Differences in the strength of these relationships were apparent between two geology types, with stronger relationships on the potentially less‐fertile geology. The strong positive correlation with time since fire and understorey canopy height reflected increasing shrub biomass and thickening of the shrub layer. The strong positive correlation for soil or foliar N, but not P, with time since fire, indicates that P does not increase relative to N over time. P may, therefore, become limiting to growth in this plant community. Similarly, the significantly higher concentrations of soil N but not P, also found in both older and long‐unburnt forest stands (>100 years since management), may exacerbate a situation of soil nutrient limitation over several decades. A characteristic feature of long unmanaged stands is a developing tea tree (Leptospermum sp.) understorey, which may benefit from elevated soil N availability and increasing organic C accumulation with prolonged fire absence. This increased shrub biomass would outcompete Eucalyptus for resources, including soil nutrients and water.  相似文献   

13.
Ludwig  Fulco  de Kroon  Hans  Berendse  Frank  Prins  Herbert H.T. 《Plant Ecology》2004,170(1):93-105
In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to obtain an insight into which resources determine changes in productivity and composition of the herbaceous layer. Soil nutrient availability increased with tree age and size and was lowest in open grassland and highest under dead trees. The lower N:P ratios of grasses from open grassland compared to grasses from under trees suggested that productivity in open grassland was limited by nitrogen, while under trees the limiting nutrient was probably P. N:P ratios of grasses growing under bushes and small trees were intermediate between large trees and open grassland indicating that the understorey of Acacia trees seemed to change gradually from a N-limited to a P-limited vegetation. Soil moisture contents were lower under than those outside of canopies of large Acacia trees suggesting that water competition between trees and grasses was important. Species composition of the herbaceous layer under Acacia trees was completely different from the vegetation in open grassland. Also the vegetation under bushes of Acacia tortilis was different from both open grassland and the understorey of large trees. The main factor causing differences in species composition was probably nutrient availability because species compositions were similar for stands of similar soil nutrient concentrations even when light and water availability was different. Changes in species composition did not result in differences in above-ground biomass, which was remarkably similar under different sized trees and in open grassland. The only exception was around dead trees where herbaceous plant production was 60% higher than under living trees. The results suggest that herbaceous layer productivity did not increase under trees by a higher soil nutrient availability, probably because grass production was limited by competition for water. This was consistent with the high plant production around dead trees because when trees die, water competition disappears but the high soil nutrient availability remains. Hence, in addition to tree soil nutrient enrichment, below-ground competition for water appears to be an important process regulating tree-grass interactions in semi-arid savanna.  相似文献   

14.
Kennard  D. K.  Gholz  H. L. 《Plant and Soil》2001,234(1):119-129
We compared soil nutrient availability and soil physical properties among four treatments (high-intensity fire, low-intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (Anadenanthera colubrina Vell. Conc.) as a bioassay. Surface soils in high-intensity fire treatments had significantly greater pH values, concentrations of extractable calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P), and amounts of resin-available P and nitrogen (N) than other treatments; however, a loss of soil organic matter during high-intensity fires likely resulted in increased bulk density and strength, and decreased water infiltration rates. Low intensity fires also significantly increased soil pH, concentrations of extractable Ca, K, Mg, and P, and amounts of resin-available P and N, although to a lesser degree than high-intensity fires. Low-intensity fires did not lower soil organic matter contents or alter soil physical properties. Plant removal and harvesting gap treatments had little effect on soil chemical and physical properties. Despite the potentially negative effects of degraded soil structure on plant growth, growth of A. colubrina seedlings were greater following high-intensity fires. Evidently, the increase in nutrient availability caused by high-intensity fires was not offset by degraded soil structure in its effects on seedling growth. Long-term effects of high intensity fires require further research.  相似文献   

15.
Abstract Grazing by domestic livestock is frequently associated with the replacement of high‐nutrient palatable species with low‐nutrient unpalatable species, which may have a substantial effect on nutrient cycling. The objective of the present study was to compare soil N availability and net N mineralization in soils under Poa ligularis (palatable grass) with those in soils under Stipa tenuissima (unpalatable grass) in a temperate semi‐arid rangeland of central Argentina. Nitrogen availability and net mineralization under laboratory and field conditions were measured. Soil N availability under P. ligularis was higher than or similar to soil N availability under S. tenuissima. In situ net N mineralization in the soil under P. ligularis was lower than or similar to net N mineralization in the soil under S. tenuissima. Potential net N mineralization was greater in the soil under P. ligularis than in the soil under S. tenuissima. Our results suggest that the replacement of palatable grasses by unpalatable grasses in the temperate semi‐arid rangelands of central Argentina may imply a reduction in the rate of nutrient cycling.  相似文献   

16.
Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large‐scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree‐ring width (TRW) and intrinsic water‐use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south‐western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition method and relationships with local climate, large‐scale climatic indices, TRW and Scots pine's iWUE were assessed. Temporal trends in N:P ratios indicated increasing P limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine‐dominated to a beech‐dominated forest took place. A significant influence of large‐scale patterns on tree‐level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large‐scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen 3 years prior to tree‐ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.  相似文献   

17.
The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty‐nine plots of 400 m2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.  相似文献   

18.
Question: How do increases in soil nutrient and water availability alter the nutrient fluxes through the resorption and litter decomposition pathways and how do they affect litter nutrient pools in a low‐productive alpine tundra ecosystem? Location: An alpine lichen‐rich tundra on Mt. Malaya Khati‐para in the NW Caucasus, Russia (43°27’ N, 41°42’ E; altitude 2800 m a.s.l.). Methods: We conducted a 4‐year fertilisation (N, P, N+P, lime) and irrigation experiment, and analysed the responses of nutrient resorption from senescing leaves, leaf litter quality and decomposability of six pre‐dominant vascular plant species, total plant community litter production and litter (nutrient) accumulation. Results: Vascular plant litter [N] and [P] increased 1.5 and 10 fold in response to N and P additions, due to increased concentrations of the nutrients in fresh leaves and unchanged or reduced resorption efficiency. Litter decomposability was not affected by nutrient amendments. Fertilisation enhanced litter production (180%; N+P treatment) and litter accumulation (80%; N+P), owing to tremendously increased production and low decomposability of graminoids. Together with increased litter [N] and [P] this led to great increases in total litter nutrient pools. Conclusions: Due to increased production of graminoids, nutrients added to the alpine tundra soil were mostly immobilised in recalcitrant, nutrient‐rich litter. This suggests that changing species composition in low productive ecosystems may act as an internal buffer mechanism, which under increased soil nutrient availability prevents the community from rapidly acquiring features typical of a high productive ecosystem such as high decomposability and high nutrient availability.  相似文献   

19.
The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field‐collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis. Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning–tree interactions, and how lianas can serve as natural lightning rods for trees.  相似文献   

20.
Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80–650 μg/L) and corresponding decreasing concentrations of P (~90–11 μg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass‐specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass‐specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18–0.69] eV, leaf litter E = 0.30 [95% CI = 0.072–0.54] eV, wood E = 0.41 [95% CI = 0.18–0.64] eV) close to predicted MTE values. There was evidence that temperature‐driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass‐specific respiration (leaf litter). Respiration rates increased under nutrient‐enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号