首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scavenger receptor class B type I (SR-BI) is an HDL receptor that mediates selective HDL lipid uptake. Peroxisomes play an important role in lipid metabolism and peroxisomal targeting signal type 1 (PTS1)-containing proteins are translocated to peroxisomes by the peroxisomal targeting import receptor, Pex5p. We have previously identified a PTS1 motif in the intracellular domain of rat SR-BI. Here, we examine the possible interaction between Pex5p and SR-BI. Expression of a Flag-tagged intracellular domain of SR-BI resulted in translocation to the peroxisome as demonstrated by double labeling with anti-Flag IgG and anti-catalase IgG analyzed by confocal microscopy. Immunoprecipitation experiments with anti-SR-BI antibody showed that Pex5p co-precipitated with SR-BI. However, when an antibody against Pex5p was used for immunoprecipitation, only the 57kDa, non-glycosylated form, of SR-BI co-precipitated. We conclude that the PTS1 domain of SR-BI is functional and can mediate peroxisomal interaction via Pex5p, in vitro.  相似文献   

2.
Peroxisomes in higher plant cells are known to differentiate in function depending on the cell type. Because of the functional differentiation, plant peroxisomes are subdivided into several classes, such as glyoxysomes and leaf peroxisomes. These peroxisomal functions are maintained by import of newly synthesized proteins containing one of two peroxisomal targeting signals known as PTS1 and PTS2. These targeting signals are known to be recognized by the cytosolic receptors, Pex5p and Pex7p, respectively. To demonstrate the contribution of Pex5p and Pex7p to the maintenance of peroxisomal functions in plants, double-stranded RNA constructs were introduced into the genome of Arabidopsis thaliana. Expression of the PEX5 and PEX7 genes was efficiently reduced by the double-stranded RNA-mediated interference in the transgenic Arabidopsis. The Pex5p-deficient Arabidopsis showed reduced activities for both glyoxysomal and leaf peroxisomal functions. An identical phenotype was observed in a transgenic Arabidopsis overexpressing functionally defective Pex5p. In contrast, the Pex7p-deficient Arabidopsis showed reduced activity for glyoxysomal function but not for leaf peroxisomal function. Analyses of peroxisomal protein import in the transgenic Arabidopsis revealed that Pex5p was involved in import of both PTS1-containing proteins and PTS2-containing proteins, whereas Pex7p contributed to the import of only PTS2-containing proteins. Overall, the results indicated that Pex5p and Pex7p play different roles in the maintenance of glyoxysomal and leaf peroxisomal functions in plants.  相似文献   

3.
We have studied how Pex5p recognizes peroxisomal targeting signal type 1 (PTS1)-containing proteins. A randomly mutagenized pex5 library was screened in a two-hybrid setup for mutations that disrupted the interaction with the PTS1 protein Mdh3p or for suppressor mutations that could restore the interaction with Mdh3p containing a mutation in its PTS1. All mutations localized in the tetratricopeptide repeat (TPR) domain of Pex5p. The Pex5p TPR domain was modeled based on the crystal structure of a related TPR protein. Mapping of the mutations on this structural model revealed that some of the loss-of-interaction mutations consisted of substitutions in alpha-helices of TPRs with bulky amino acids, probably resulting in local misfolding and thereby indirectly preventing binding of PTS1 proteins. The other loss-of-interaction mutations and most suppressor mutations localized in short, exposed, intra-repeat loops of TPR2, TPR3, and TPR6, which are predicted to mediate direct interaction with PTS1 amino acids. Additional site-directed mutants at conserved positions in intra-repeat loops underscored the importance of the loops of TPR2 and TPR3 for PTS1 interaction. Based on the mutational analysis and the structural model, we put forward a model as to how PTS1 proteins are selected by Pex5p.  相似文献   

4.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

5.
Peroxisomal alcohol oxidase (AO) from Hansenula polymorpha is inactive and partially mislocalized to the cytosol upon synthesis in Saccharomyces cerevisiae. Co-production with H. polymorpha pyruvate carboxylase (HpPyc1p) resulted in AO activation, but did not improve import into peroxisomes. We show that import of AO mediated by S. cerevisiae Pex5p is strictly dependent on the peroxisomal targeting signal 1 (PTS1) of AO and independent of HpPyc1p. In contrast, HpPex5p-mediated sorting of AO into S. cerevisiae peroxisomes is independent of the PTS1, but requires an alternative PTS that is only formed when HpPyc1p is co-produced and most likely involves folding and co-factor binding to AO.  相似文献   

6.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

7.
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.  相似文献   

8.
Eukaryote peroxisomes, plant glyoxysomes and trypanosomal glycosomes belong to the microbody family of organelles that compartmentalise a variety of biochemical processes. The interaction between the PTS1 signal and its cognate receptor Pex5 initiates the major import mechanism for proteins into the matrix of these organelles. Relying on the analysis of amino acid sequence variability of known PTS1-targeted proteins and PTS1-containing peptides that interact with Pex5 in the yeast two-hybrid assay, on binding site studies of the Pex5-ligand complex crystal structure, 3D models and sequences of Pex5 proteins from various taxa, we derived the requirements for a C-terminal amino acid sequence to interact productively with Pex5. We found evidence that, at least the 12 C-terminal residues of a given substrate protein are implicated in PTS1 signal recognition. This motif can be structurally and functionally divided into three regions: (i) the C-terminal tripeptide, (ii) a region interacting with the surface of Pex5 (about four residues further upstream), and (iii) a polar, solvent-accessible and unstructured region with linker function (the remaining five residues). Specificity differences are confined to taxonomic subgroups (metazoa and fungi) and are connected with amino acid type preferences in region 1 and deviating hydrophobicity patterns in region 2.  相似文献   

9.
The assembly of proteins in the peroxisomal membrane is a multistep process requiring their recognition in the cytosol, targeting to and insertion into the peroxisomal membrane, and stabilization within the lipid bilayer. The peroxin Pex19p has been proposed to be either the receptor that recognizes and targets newly synthesized peroxisomal membrane proteins (PMP) to the peroxisome or a chaperone required for stabilization of PMPs at the peroxisomal membrane. Differentiating between these two roles for Pex19p could be achieved by determining whether the peroxisomal targeting signal (PTS) and the region of Pex19p binding of a PMP are the same or different. We addressed the role for Pex19p in the assembly of two PMPs, Pex30p and Pex32p, of the yeast Saccharomyces cerevisiae. Pex30p and Pex32p control peroxisome size and number but are dispensable for peroxisome formation. Systematic truncations from the carboxyl terminus, together with in-frame deletions of specific regions, have identified PTSs essential for targeting Pex30p and Pex32p to peroxisomes. Both Pex30p and Pex32p interact with Pex19p in regions that do not overlap with their PTSs. However, Pex19p is required for localizing Pex30p and Pex32p to peroxisomes, because mutations that disrupt the interaction of Pex19p with Pex30p and Pex32p lead to their mislocalization to a compartment other than peroxisomes. Mutants of Pex30p and Pex32p that localize to peroxisomes but produce cells exhibiting the peroxisomal phenotypes of cells lacking these proteins demonstrate that the regions in these proteins that control peroxisomal targeting and cell biological activity are separable. Together, our data show that the interaction of Pex19p with Pex30p and Pex32p is required for their roles in peroxisome biogenesis and are consistent with a chaperone role for Pex19p in stabilizing or maintaining membrane proteins in peroxisomes.  相似文献   

10.
We previously isolated an Arabidopsis: peroxisome-deficient ped2 mutant by its resistance to 2,4-dichlorophenoxybutyric acid. Here, we describe the isolation of a gene responsible for this deficiency, called the PED2 gene, by positional cloning and confirmed its identity by complementation analysis. The amino acid sequence of the predicted protein product is similar to that of human Pex14p, which is a key component of the peroxisomal protein import machinery. Therefore, we decided to call it AT:Pex14p. Analyses of the ped2 mutant revealed that AT:Pex14p controls intracellular transport of both peroxisome targeting signal (PTS)1- and PTS2-containing proteins into three different types of peroxisomes, namely glyoxysomes, leaf peroxisomes and unspecialized peroxisomes. Mutation in the PED2 gene results in reduction of enzymes in all of these functionally differentiated peroxisomes. The reduction in these enzymes induces pleiotropic defects, such as fatty acid degradation, photorespiration and the morphology of peroxisomes. These data suggest that the AT:Pex14p has a common role in maintaining physiological functions of each of these three kinds of plant peroxisomes by determining peroxisomal protein targeting.  相似文献   

11.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

12.
The targeting of castor bean isocitrate lyase to peroxisomes was studied by expression in the heterologous host Saccharomyces cerevisae from which the endogenous ICL1 gene had been removed by gene disruption. Peroxisomal import of ICL was dependent upon the PTS1 receptor Pex5p and was lost by deletion of the last three amino acids, Ala-Arg-Met. However, removal of an additional 16 amino acids restored the ability of this truncated ICL to be targeted to peroxisomes and this import activity, like that of the full-length protein, was dependent upon Pex5p. The ability of peptides corresponding to the carboxyl terminal ends of wild-type and Δ3 and Δ19 mutants of ICL to interact with the PTS1-binding portion of Pex5p from humans, plants and yeast was determined using the yeast two-hybrid system. The peptide corresponding to wild-type ICL interacted with all three Pex5p proteins to differing extents, but neither mutant could interact with Pex5p from any species. Thus, ICL can be targeted to peroxisomes in a Pex5p-dependent but PTS1-independent fashion. These results help to clarify the contradictory published data about the requirement of the PTS1 signal for ICL targeting.  相似文献   

13.
The targeting of castor bean isocitrate lyase to peroxisomes was studied by expression in the heterologous host Saccharomyces cerevisae from which the endogenous ICL1 gene had been removed by gene disruption. Peroxisomal import of ICL was dependent upon the PTS1 receptor Pex5p and was lost by deletion of the last three amino acids, Ala-Arg-Met. However, removal of an additional 16 amino acids restored the ability of this truncated ICL to be targeted to peroxisomes and this import activity, like that of the full-length protein, was dependent upon Pex5p. The ability of peptides corresponding to the carboxyl terminal ends of wild-type and Delta 3 and Delta 19 mutants of ICL to interact with the PTS1-binding portion of Pex5p from humans, plants and yeast was determined using the yeast two-hybrid system. The peptide corresponding to wild-type ICL interacted with all three Pex5p proteins to differing extents, but neither mutant could interact with Pex5p from any species. Thus, ICL can be targeted to peroxisomes in a Pex5p-dependent but PTS1-independent fashion. These results help to clarify the contradictory published data about the requirement of the PTS1 signal for ICL targeting.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, beta-oxidation of fatty acids is compartmentalised in peroxisomes. Most yeast peroxisomal matrix proteins contain a type 1C-terminal peroxisomal targeting signal (PTS1) consisting of the tripeptide SKL or a conservative variant thereof. PTS1-terminated proteins are imported by Pex5p, which interacts with the targeting signal via a tetratricopeptide repeat (TPR) domain. Yeast cells devoid of Pex5p are unable to import PTS1-containing proteins and cannot degrade fatty acids. Here, the PEX5-TPR domains from human, tobacco, and nematode were inserted into a TPR-less yeast Pex5p construct to generate Pex5p chimaeras. These hybrid proteins were examined for functional complementation of the pex5delta mutant phenotype. Expression of the Pex5p chimaeras in pex5delta mutant cells restored peroxisomal import of PTS1-terminated proteins. Chimaera expression also re-established degradation of oleic acid, allowing growth on this fatty acid as a sole carbon source. We conclude that, in the context of Pex5p chimaeras, the human, tobacco, and nematode Pex5p-TPR domains are functionally interchangeable with the native domain for the peroxisomal import of yeast proteins terminating with canonical PTS1s. Non-conserved yeast PTS1s, such as HRL and HKL, did not interact with the tobacco PEX5-TPR domain in the two-hybrid system. HRL occurs at the C-terminus of the peroxisomal protein Eci1p, which is required for growth on unsaturated fatty acids. Although mutant pex5delta cells expressing a yeast/tobacco Pex5p chimaera failed to import a GFP-Eci1p reporter protein, they were able to grow on oleic acid. We reason that this is due to a cryptic PTS in native Eci1p that can function in a redundant system with the C-terminal HRL.  相似文献   

15.
Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1.  相似文献   

16.
PTS1-independent sorting of peroxisomal matrix proteins by Pex5p   总被引:1,自引:0,他引:1  
Most peroxisomal matrix proteins contain a peroxisomal targeting signal 1 (PTS1) for sorting to the correct organelle. This signal is located at the extreme C-terminus and generally consists of only three amino acids. The PTS1 is recognized by the receptor protein Pex5p. Several examples have been reported of peroxisomal matrix proteins that are sorted to peroxisomes via Pex5p, but lack a typical PTS1 tripeptide. In this contribution we present an overview of these so-called non-PTS1 proteins and discuss the current knowledge of the molecular mechanisms involved in their sorting.  相似文献   

17.
Dammai V  Subramani S 《Cell》2001,105(2):187-196
Peroxisomal targeting signals (PTSs) are recognized by predominantly cytosolic receptors, Pex5p and Pex7p. The fate of these PTS receptors following their interactions on the peroxisomal membrane with components of docking and putative translocation complexes is unknown. Using both novel and multiple experimental approaches, we show that human Pex5p does not just bind cargo and deliver it to the peroxisome membrane, but participates in multiple rounds of entry into the peroxisome matrix and export to the cytosol independent of the PTS2 import pathway. This unusual shuttling mechanism for the PTS1 receptor distinguishes protein import into peroxisomes from that into most other organelles, with the exception of the nucleus.  相似文献   

18.
Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.  相似文献   

19.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

20.
We identified a Saccharomyces cerevisiae peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号