首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
An affinity adsorbent for beta-glycosidases has been prepared by using beta-glycosylamidine as a ligand. beta-Glucosylamidine and beta-galactosylamidine, highly potent and selective inhibitors of beta-glucosidases and beta-galactosidases, respectively, were immobilized by a novel one-pot procedure involving the addition of a beta-glycosylamine and 2-iminothiolane.HCl simultaneously to a matrix modified with maleimido groups via an appropriate spacer to give an affinity adsorbent for beta-glucosidases and beta-galactosidases, respectively. This one-pot procedure enables various beta-glycosylamidine ligands to be formed and immobilized conveniently according to the glycon substrate specificities of the enzymes. A crude enzyme extract from tea leaves (Camellia sinensis) and a beta-galactosidase from Penicillium multicolor were chromatographed directly on each affinity adsorbent to give a beta-glucosidase and a beta-galactosidase to apparent homogeneity in one step by eluting the column with glucose or by a gradient NaCl elution, respectively. The beta-glucosidase and beta-galactosidase were inhibited competitively by a soluble form of the corresponding beta-glycosylamidine ligand with an inhibition constant (K(i)) of 2.1 and 0.80 microM, respectively. Neither enzyme was bound to the adsorbent with a mismatched ligand, indicating that the binding of the glycosidases was of specific nature that corresponds to the glycon substrate specificity of the enzymes. The ease of preparation and the selective nature of the affinity adsorbent should promise a large-scale preparation of the affinity adsorbent for the purification and removal of specific glycosidases according to their glycon substrate specificities.  相似文献   

2.
The binding free energies of four inhibitors to bovine beta-trypsin are calculated. The inhibitors use either ornithine, lysine, or arginine to bind to the S1 specificity site. The electrostatic contribution to binding free energy is calculated by solving the finite difference Poisson-Boltzmann equation, the contribution of nonpolar interactions is calculated using a free energy-surface area relationship and the loss of conformational entropy is estimated both for trypsin and ligand side chains. Binding free energy values are of a reasonable magnitude and the relative affinity of the four inhibitors for trypsin is correctly predicted. Electrostatic interactions are found to oppose binding in all cases. However, in the case of ornithine- and lysine-based inhibitors, the salt bridge formed between their charged group and the partially buried carboxylate of Asp189 is found to stabilize the complex. Our analysis reveals how the molecular architecture of the trypsin binding site results in highly specific recognition of substrates and inhibitors. Specifically, partially burying Asp189 in the inhibitor-free enzyme decreases the penalty for desolvation of this group upon complexation. Water molecules trapped in the binding interface further stabilize the buried ion pair, resulting in a favorable electrostatic contribution of the ion pair formed with ornithine and lysine side chains. Moreover, all side chains that form the trypsin specificity site are partially buried, and hence, relatively immobile in the inhibitor-free state, thus reducing the entropic cost of complexation. The implications of the results for the general problem of recognition and binding are considered. A novel finding in this regard is that like charged molecules can have electrostatic contributions to binding that are more favorable than oppositely charged molecules due to enhanced interactions with the solvent in the highly charged complex that is formed.  相似文献   

3.
Calpains are calcium activated cysteine proteases found throughout the animal, plant, and fungi kingdoms; 14 isoforms have been described in the human genome. Calpains have been implicated in multiple models of human disease; for instance, calpain 1 is activated in the brains of individuals with Alzheimer's disease, and the digestive tract specific calpain 9 is down-regulated in gastric cancer cell lines. We have solved the structures of human calpain 1 and calpain 9 protease cores using crystallographic methods; both structures have clear implications for the function of non-catalytic domains of full-length calpains in the calcium-mediated activation of the enzyme. The structure of minicalpain 1 is similar to previously solved structures of the protease core. Auto-inhibition in this system is most likely through rearrangements of a central helical/loop region near the active site cysteine, which occlude the substrate binding site. However, the structure of minicalpain 9 indicates that auto-inhibition in this enzyme is mediated through large intra-domain movements that misalign the catalytic triad. This disruption is reminiscent of the full-length inactive calpain conformation. The structures of the highly conserved, ubiquitously expressed human calpain 1 and the more tissue specific human calpain 9 indicate that although there are high levels of sequence conservation throughout the calpain family, isolated structures of family members are insufficient to explain the molecular mechanism of activation for this group of proteins.  相似文献   

4.
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.  相似文献   

5.
The spontaneous prostaglandin I2 production was significantly reduced by the removal of endothelial cells from the isolated dog renal arteries compared with relative slight reduction of prostaglandin E2 production. The stimulation of prostaglandin I2 production induced with angiotensin II was also markedly reduced under the absence of endothelial cells, while its potentiation of prostaglandin E2 production was not inhibited. The results suggest that the vascular endothelial cells are the major sources of prostaglandin I2 in the dog renal arteries, while prostaglandin E2 is mainly produced in other cell types, perhaps vascular smooth muscle cells.  相似文献   

6.
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA–protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein–protein and RNA–protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.  相似文献   

7.
8.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor.  相似文献   

9.
10.
11.
Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150-200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP.  相似文献   

12.
Human fibrillin-1, the major structural protein of connective tissue 10-12 nm microfibrils, contains multiple calcium binding epidermal growth factor-like domains interspersed with transforming growth factor beta-binding protein-like (TB) domains. TB4 contains a flexible RGD loop that mediates cell adhesion via alphaVbeta3 and alpha5beta1 integrins. This study identifies integrin alphaVbeta6 as a novel cellular receptor for fibrillin-1 with a K(d) of approximately 0.45 mum. Analyses of this interaction by surface plasmon resonance and immunocytochemistry reveal different module requirements for alphaVbeta6 activation compared with those of alphaVbeta3, suggesting that a covalent linkage of an N-terminal calcium binding epidermal growth factor-like domain to TB4 can modulate alphaV integrin binding specificity. Furthermore, our data suggest alpha5beta1 is a low affinity fibrillin-1 receptor (K(d) > 1 mum), thus providing a molecular explanation for the different alpha5beta1 distribution patterns seen when human keratinocytes and fibroblasts are plated on recombinant fibrillin fragments versus those derived from the physiological ligand fibronectin. Non-focal contact distribution of alpha5beta1 suggests that its engagement by fibrillin-1 may elicit a lesser degree and/or different type of intracellular signaling compared with that seen with a high affinity ligand.  相似文献   

13.
Transforming growth factor (TGF-beta) protein families are cytokines that occur as a large number of homologous proteins. Three major subgroups of these proteins with marked specificities for their receptors have been found-TGF-beta, activin/inhibin, and bone morphogenic protein. Although structural information is available for some members of the TGF-beta family of ligands and receptors, very little is known about the way these growth factors interact with the extracellular domains of their cell surface receptors, especially the type II receptor. In addition, the elements that are the determinants of binding and specificity of the ligands are poorly understood. The structure of the extracellular domain of the receptor is a three-finger fold similar to some toxin structures. Amino acid exchanges between multiply aligned homologous sequences of type II receptors point to a residue at the surface, specifically finger 1, as the determinant of ligand specificity and complex formation. The "knuckle" epitope of ligands was predicted to be the surface that interacts with the type II receptor. The residues on strands beta2, beta3, beta7, beta8 and the loop region joining beta2 and beta3 and joining beta7 and beta8 of the ligands were identified as determinants of binding and specificity. These results are supported by studies on the docking of the type II receptor to the ligand dimer-type I receptor complex.  相似文献   

14.
H C Nelson  R T Sauer 《Cell》1985,42(2):549-558
Intragenic, second-site reversion has been used to identify amino acid substitutions that increase the affinity and specificity of the binding of lambda repressor to its operator sites. Purified repressors bearing the second-site substitutions bind operator DNA from 3 to 600 fold more strongly than wild type; these affinity changes result from both increased rates of operator association and decreased rates of operator dissociation. Three of the revertant substitutions occur in the alpha 2 and alpha 3 DNA binding helices of repressor and seem to increase affinity by introducing new salt-bridges or hydrogen bonds with the sugar-phosphate backbone of the operator site. The fourth substitution alters the alpha 5 dimerization helix of repressor and appears to increase operator affinity indirectly.  相似文献   

15.
Be X  Hong Y  Wei J  Androphy EJ  Chen JJ  Baleja JD 《Biochemistry》2001,40(5):1293-1299
E6AP is a cellular protein that binds cancer-related papillomaviral E6 proteins. The E6 binding domain, called E6ap, is located on an 18-amino acid segment of E6AP. The corresponding peptide was synthesized and its structure determined by nuclear magnetic resonance spectroscopy. The overall structure of the peptide is helical. A consensus E6-binding sequence among different E6 interacting proteins contains three conserved hydrophobic residues. In the structure of the E6AP peptide, the three conserved leucines (Leu 9, Leu 12, and Leu 13) form a hydrophobic patch on one face of the alpha-helix. Substitution of any of these leucines with alanine abolished binding to E6 protein, indicating that the entire hydrophobic patch is necessary. Mutation of a glutamate to proline, but not alanine, also disrupted the interaction between E6 and E6AP protein, suggesting that the E6-binding motif of the E6AP protein must be helical when bound to E6. Comparison of the E6ap structure and mutational results with those of another E6-binding protein (E6BP/ERC-55) indicates the existence of a general E6-binding motif.  相似文献   

16.
To clarify the physical basis of DNA binding specificity, the thermodynamic properties and DNA binding and bending abilities of the DNA binding domains (DBDs) of sequence-specific (SS) and non-sequence-specific (NSS) HMG box proteins were studied with various DNA recognition sequences using micro-calorimetric and optical methods. Temperature-induced unfolding of the free DBDs showed that their structure does not represent a single cooperative unit but is subdivided into two (in the case of NSS DBDs) or three (in the case of SS DBDs) sub-domains, which differ in stability. Both types of HMG box, most particularly SS, are partially unfolded even at room temperature but association with DNA results in stabilization and cooperation of all the sub-domains. Binding and bending measurements using fluorescence spectroscopy over a range of ionic strengths, combined with calorimetric data, allowed separation of the electrostatic and non-electrostatic components of the Gibbs energies of DNA binding, yielding their enthalpic and entropic terms and an estimate of their contributions to DNA binding and bending. In all cases electrostatic interactions dominate non-electrostatic in the association of a DBD with DNA. The main difference between SS and NSS complexes is that SS are formed with an enthalpy close to zero and a negative heat capacity effect, while NSS are formed with a very positive enthalpy and a positive heat capacity effect. This indicates that formation of SS HMG box-DNA complexes is specified by extensive van der Waals contacts between apolar groups, i.e. a more tightly packed interface forms than in NSS complexes. The other principal difference is that DNA bending by the NSS DBDs is driven almost entirely by the electrostatic component of the binding energy, while DNA bending by SS DBDs is driven mainly by the non-electrostatic component. The basic extensions of both categories of HMG box play a similar role in DNA binding and bending, making solely electrostatic interactions with the DNA.  相似文献   

17.
The inherent immobility of rice (Oryza sativa L.) limited their abilities to avoid heat stress and required them to contend with heat stress through innate defense abilities in which heat shock proteins played important roles. In this study, Hsp26.7, Hsp23.2, Hsp17.9A, Hsp17.4 and Hsp16.9A were up-regulated in Nipponbare during seedling and anthesis stages in response to heat stress. Subsequently, the expressing levels of these five sHsps in the heat-tolerant rice cultivar, Co39, were all significantly higher than that in the heat-susceptible rice cultivar, Azucena. This indicated that the expressive level of these five sHsps was positively related to the ability of rice plants to avoid heat stress. Thus, the expression level of these five sHsps can be regarded as bio-markers for screening rice cultivars with different abilities to avoid heat stress. Hsp18.1, Hsp17.9A, Hsp17.7 and Hsp16.9A, in the three rice cultivars under heat stress were found to be involved in one protein complex by Native-PAGE, and the interactions of Hsp18.1 and Hsp 17.7, Hsp18.1 and Hsp 17.9A, and Hsp17.7 and Hsp16.9A were further validated by yeast 2-hybridization. Pull down assay also confirmed the interaction between Hsp17.7 and Hsp16.9A in rice under heat stress. In conclusion, the up-regulation of the 5 sHsps is a key step for rice to tolerate heat stress, after that some sHsps assembled into a large hetero-oligomeric complex. In addition, through protein–protein interaction, Hsp101 regulated thiamine biosynthesis, and Hsp82 homology affected nitrogen metabolism, while Hsp81-1 were involved in the maintenance of sugar or starch synthesis in rice plants under heat stress. These results provide new insight into the regulatory mechanism of sHsps in rice.  相似文献   

18.
19.
Wright E  Serpersu EH 《Biochemistry》2006,45(34):10243-10250
One of the most commonly occurring aminoglycoside resistance enzymes is aminoglycoside 2'-O-nucleotidyltransferase [ANT(2')]. In the present study molecular determinants of affinity and specificity for aminoglycoside binding to this enzyme are investigated using isothermal titration calorimetry (ITC). Binding of aminoglycosides is enthalpically driven accompanied by negative entropy changes. The presence of metal-nucleotide increases the affinity for all but one of the aminoglycosides studied but has no effect on specificity. The substituents at positions 1, 2', and 6' are important determinants of substrate specificity. An amino group at these positions leads to greater affinity. No correlation is observed between the change in affinity and enthalpy. At the 2' position greater affinity results from a more negative enthalpy for an aminoglycoside containing an amino rather than a hydroxyl at that position. At the 6' position the greater affinity for an aminoglycoside containing an amino substituent results from a less disfavorable entropic contribution. The thermodynamic basis for the change in affinity at position 1 could not be determined because of the weak binding of one of the aminoglycoside substrates, amikacin. The effect of increasing osmotic stress on affinity was used to determine that a net release of approximately four water molecules occurs when tobramycin binds to ANT(2'). No measurable net change in the number of bound water molecules is observed when neomycin binds the enzyme. Data acquired in this work provide the rationale for the ability of ANT(2') to confer resistance against kanamycins but not neomycins.  相似文献   

20.
The binding of small molecule targets by RNA aptamers provides an excellent model to study the versatility of RNA function. The malachite green aptamer binds and recognizes its ligand via stacking and electrostatic interactions. The binding of the aptamer to its original selection target and three related molecules was determined by isothermal titration calorimetry, equilibrium dialysis, and fluorescence titration. The results reveal that the entropy of complex formation plays a large role in determining binding affinity and ligand specificity. These data combined with previous structural studies show that metal ions are required to stabilize the complexes with non-native ligands whereas the complex with the original selection target is stable at low salt and in the absence of divalent metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号