首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
 回顾了半干旱地区天然草地灌丛化的成因和机理、灌丛化导致草地土壤水分和养分空间异质性及其对生态系统生物地球化学过程的影响,以及土壤异质性与土地退化关系等方面的研究进展,周期性气候干旱和过度放牧是天然草地灌丛化的主要原因,伴随灌木入侵而出现的草地土壤水分和养分的空间异质性,是造成生态系统水分和养分流失,以及土壤加速侵蚀的原因之一。因此,半干旱地区天然草地的灌丛化应得到一定的控制,使群落中灌丛保持适宜的密度,以避免生态系统水分和养分的损失。  相似文献   

3.
Todd  S.W.  Hoffman  M.T. 《Plant Ecology》1999,142(1-2):169-178
Changes in plant species richness and community composition were investigated across a fence separating heavily grazed communal and lightly grazed commercial farming systems in Namaqualand, South Africa. No significant differences in plant species richness between communal and commercial farming systems were detected either locally within individual plots or overall across all plots. Within-plot, richness of species tolerant of grazing, such as annuals and geophytes, has increased, while the richness of large palatable shrub species has decreased on the communal rangeland. In terms of plant cover, species' responses to grazing were strongly associated with growth form. Annuals and geophytes formed the majority of grazing increasers, while large, presumably palatable, shrubs and leaf succulents were characteristic grazing decreasers. An investigation into population processes of five shrub species revealed that heavy grazing on the communal rangeland has resulted in: reduced size of palatable shrub species; reduced flower production and seedling recruitment of palatable species; increased density and recruitment of the unpalatable shrub, Galenia africana. Reductions in shrub volume, reproductive output and seedling recruitment were most marked in the palatable shrub Osteospermum sinuatum and were in the order of 90%. The results are further discussed in terms of their relevance to rangeland dynamics and the current land use practices of the region.  相似文献   

4.
The spatial heterogeneity of recent decadal dynamics in vegetation greenness and biomass in response to changes in summer warmth index (SWI) was investigated along spatial gradients on the Arctic Slope of Alaska. Image spatial analysis was used to examine the spatial pattern of greenness dynamics from 1991 to 2000 as indicated by variations of the maximum normalized difference vegetation index (Peak NDVI) and time‐integrated NDVI (TI‐NDVI) along latitudinal gradients. Spatial gradients for both the means and temporal variances of the NDVI indices for 0.1° latitude intervals crossing three bioclimate subzones were analyzed along two north–south Arctic transects. NDVI indices were generally highly variable over the decade, with great heterogeneity across the transects. The greatest variance in TI‐NDVI was found in low shrub vegetation to the south (68.7–68.8°N) and corresponded to high fractional cover of shrub tundra and moist acidic tundra (MAT), while the greatest variance in Peak‐NDVI predominately occurred in areas dominated by wet tundra (WT) and moist nonacidic tundra (MNT). Relatively high NDVI temporal variances were also related to specific transitional areas between dominant vegetation types. The regional temporal variances of NDVI from 1991 to 2000 were largely driven by meso‐scale climate dynamics. The spatial heterogeneity of the NDVI variance was mostly explained by the fractional land cover composition, different responses of each vegetation type to climate change, and patterned ground features. Aboveground plant biomass exhibited similar spatial heterogeneity as TI‐NDVI; however, spatial patterns are slightly different from NDVI because of their nonlinear relationship.  相似文献   

5.
干旱区绿洲-荒漠过渡带灌丛土壤属性研究   总被引:16,自引:1,他引:15  
以天山北坡绿洲 荒漠过渡带为研究区,选择3种类型的灌丛并采集不同位置和深度的灌丛土壤样品进行分析,研究灌丛土壤资源的聚集效应.结果表明,干旱区绿洲 荒漠过渡带不同类型灌丛对土壤粒度分布的影响不显著,土壤以砂和粉砂为主,红柳+裸地灌丛土壤粒度分布的聚集效应明显;灌丛土壤有机质、全氮和速效钾含量在冠幅下最高,其次为灌丛间低矮植物下,灌丛间裸地最低,呈现出明显的“肥岛”现象;不同灌丛类型和采样位置对土壤盐分离子和总盐含量的变化影响显著,且不同灌丛土壤资源的聚集效应各异;导致不同类型灌丛土壤资源富集率不同的原因有气候因素、灌木分布的土壤环境、灌丛高度和冠幅、灌丛间有无低矮植物等.  相似文献   

6.
Weber  Gerhard E.  Moloney  Kirk  Jeltsch  Florian 《Plant Ecology》2000,150(1-2):77-96
Increasing cover by woody vegetation, prevalent in semiarid savanna rangelands throughout the world, is a degrading process attributed to the grazing impact as a major causal factor. We studied grazing effects on savanna vegetation dynamics under alternative stocking strategies with a spatially explicit grid-based simulation model grounded in Kalahari (southern Africa) ecology. Plant life histories were modeled for the three major life forms: perennial grasses, shrubs, annuals. We conducted simulation experiments over a range of livestock utilization intensities for three alternative scenarios of small scale grazing heterogeneity, and two alternative strategies: fixed stocking versus adaptive stocking tracking herbage production. Additionally, the impact of the duration of the management planning horizon was studied, by comparing community response and mean stocking rates after 20 and 50 years. Results confirmed a threshold behavior of shrub cover increase: at low, subcritical utilization intensity little change occurred; when utilization intensity exceeded a threshold, shrub cover increased drastically. For both stocking strategies, thresholds were highly sensitive to grazing heterogeneity. At a given critical utilization intensity, the long term effect of grazing depended on the level of grazing heterogeneity: whereas under low heterogeneity, shrub cover remained unchanged, a large increase occurred under highly heterogeneous grazing. Hence, information on spatial grazing heterogeneity is crucial for correct assessment of the impact of livestock grazing on vegetation dynamics, and thus for the assessment of management strategies. Except for the least heterogeneous grazing scenario, adaptive stocking allowed a more intensive utilization of the range without inflating the risk of shrub cover increase. A destabilizing feedback between rainfall and herbage utilization was identified as the major cause for the worse performance of fixed compared to adaptive stocking, which lacks this feedback. Given the usually high grazing heterogeneity in semiarid rangelands, adaptive stocking provides a management option for increasing herbage utilization and thus returns of livestock produce without increasing degradation risks.  相似文献   

7.
Abstract. Successional patches are a large component of forest ecosystems throughout the world and their vegetation composition is conditioned by multiple factors such as land use history, disturbances, environmental conditions and landscape context. We investigated the relative contribution of historical, environmental, biotic and spatial factors in determining vegetation composition and invasion by exotic species in secondary forest patches of Sierra de San Javier, Tucumán, Argentina. We estimated canopy cover for shrub, vine and tree species distributed over 51 patches with known land use history. We also recorded environmental, historical and spatial variables and used multivariate techniques to explore the relationship between forest composition and explanatory variables. Land use, time since abandonment, altitude, slope and cover of different strata were related to the vegetation pattern in the study site, and they were all significantly structured over space. Exotic species appeared to differ from natives in their response to explanatory variables. Overall, exotic species were dominant on the edges of young patches originated from herbaceous crops, but the total number of exotic species was related to the distance to urban areas and small farms identified as potential sources of exotic propagules. Vegetation composition of secondary forests in NW Argentina was related to historical and environmental factors, but spatial variables strongly influenced vegetation composition as well as the variation in explanatory variables.  相似文献   

8.
Savannas are commonly described as a vegetation type with a grass layer interspersed with a discontinuous tree or shrub layer. On the contrary, forbs, a plant life form that can include any nongraminoid herbaceous vascular plant, are poorly represented in definitions of savannas worldwide. While forbs have been acknowledged as a diverse component of the herbaceous layer in savanna ecosystems and valued for the ecosystem services and functions they provide, they have not been the primary focus in most savanna vegetation studies. We performed a systematic review of scientific literature to establish the extent to which forbs are implicitly or explicitly considered as a discrete vegetation component in savanna research. The overall aims were to summarize knowledge on forb ecology, identify knowledge gaps, and derive new perspectives for savanna research and management with a special focus on arid and semiarid ecosystems in Africa. We synthesize and discuss our findings in the context of different overarching research themes: (a) functional organization and spatial patterning, (b) land degradation and range management, (c) conservation and reserve management, (d) resource use and forage patterning, and (e) germination and recruitment. Our results revealed biases in published research with respect to study origin (country coverage in Africa), climate (more semiarid than arid systems), spatial scale (more local than landscape scale), the level at which responses or resource potential was analyzed (primarily plant functional groups rather than species), and the focus on interactions between life forms (rather seldom between forbs and grasses and/or trees). We conclude that the understanding of African savanna community responses to drivers of global environmental change requires knowledge beyond interactions between trees and grasses only and beyond the plant functional group level. Despite multifaceted evidence of our current understanding of forbs in dry savannas, there appear to be knowledge gaps, specifically in linking drivers of environmental change to forb community responses. We therefore propose that more attention be given to forbs as an additional ecologically important plant life form in the conventional tree–grass paradigm of savannas.  相似文献   

9.
Although free-roaming equids occur on all of the world’s continents except Antarctica, very few studies (and none in the Great Basin, USA) have either investigated their grazing effects on vegetation at more than one spatial scale or compared characteristics of areas from which grazing has been removed to those of currently grazed areas. We compared characteristics of vegetation at 19 sites in nine mountain ranges of the western Great Basin; sites were either grazed by feral horses (Equus caballus) or had had horses removed for the last 10–14 years. We selected horse-occupied and horse-removed sites with similar aspect, slope, fire history, grazing pressure by cattle (minimal to none), and dominant vegetation (Artemisia tridentata). During 1997 and 1998, line-intercept transects randomly located within sites revealed that horse-removed sites exhibited 1.1−1.9 times greater shrub cover, 1.2–1.5 times greater total plant cover, 2–12 species greater plant species richness, and 1.9–2.9 times greater cover and 1.1–2.4 times greater frequency of native grasses than did horse-occupied sites. In contrast, sites with horses tended to have more grazing-resistant forbs and exotic plants. Direction and magnitude of landscape-scale results were corroborated by smaller-scale comparisons within horse-occupied sites of horse-trail transects and (randomly located) transects that characterized overall site conditions. Information-theoretic analyses that incorporated various subsets of abiotic variables suggested that presence of horses was generally a strong determinant of those vegetation-related variables that differed significantly between treatments, especially frequency and cover of grasses, but also species richness and shrub cover and frequency. In contrast, abiotic variables such as precipitation, site elevation, and soil erodibility best predicted characteristics such as forb cover, shrub frequency, and continuity of the shrub canopy. We found species richness of plants monotonically decreased across sites as grazing disturbance increased, suggesting that either the bell-shaped diversity-disturbance curve of the intermediate-disturbance hypothesis does not apply in this system or that most sites are already all on the greater-disturbance slope of the curve. In our study, numerous vegetation properties of less-grazed areas and sites differed notably from horse-grazed sites at local and landscape scales during a wetter and an average-precipitation year. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Road verges in the Prince Albert district, South Africa were examined to determine whether they are important refugia for plant species in the Karoo biome. Vascular plants at 50 sites on road verges were compared with those plant communities in the adjacent grazed rangelands. Verges were found to support a greater mean number of species, total plant cover, and number of individual plants. Road verges were found to contain 11 unique species compared with 20 unique species in rangelands. Plant community composition varied with more forbs and succulents on the verge and more shrubs in the rangeland. Significantly greater cover of unpalatable plants was found on the ungrazed road verge, and no difference in palatable and highly palatable plant cover was recorded, indicating that herbivory is not a major driver in defining community differences in these environments. No significant differences in soil moisture or texture were found between verge and rangeland. We argue that road maintenance and construction activities have an over-riding controlling influence on road verge community composition. Although it is not possible to discount the possibility that road verges provide an important refuge for certain species, it appears that they are disturbed environments that do not contribute significantly to the plant conservation needs of this biome.  相似文献   

11.
Montané F  Casals P  Dale MR 《PloS one》2011,6(12):e28652
We used a multi-method approach to analyze the spatial patterns of shrubs and cover types (plant species, litter or bare soil) in grassland-shrubland ecotones. This approach allows us to assess how fine-scale spatial heterogeneity of cover types affects the patterns of Cytisus balansae shrub encroachment into mesic mountain grasslands (Catalan Pyrenees, Spain). Spatial patterns and the spatial associations between juvenile shrubs and different cover types were assessed in mesic grasslands dominated by species with different palatabilities (palatable grass Festuca nigrescens and unpalatable grass Festuca eskia). A new index, called RISES ("Relative Index of Shrub Encroachment Susceptibility"), was proposed to calculate the chances of shrub encroachment into a given grassland, combining the magnitude of the spatial associations and the surface area for each cover type. Overall, juveniles showed positive associations with palatable F. nigrescens and negative associations with unpalatable F. eskia, although these associations shifted with shrub development stage. In F. eskia grasslands, bare soil showed a low scale of pattern and positive associations with juveniles. Although the highest RISES values were found in F. nigrescens plots, the number of juvenile Cytisus was similar in both types of grasslands. However, F. nigrescens grasslands showed the greatest number of juveniles in early development stage (i.e. height<10 cm) whereas F. eskia grasslands showed the greatest number of juveniles in late development stages (i.e. height>30 cm). We concluded that in F. eskia grasslands, where establishment may be constrained by the dominant cover type, the low scale of pattern on bare soil may result in higher chances of shrub establishment and survival. In contrast, although grasslands dominated by the palatable F. nigrescens may be more susceptible to shrub establishment; current grazing rates may reduce juvenile survival.  相似文献   

12.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

13.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   

14.
Ecological restoration of native woodlands and wooded pastures on former agricultural land is an important topic in modern conservation practice. The introduction of large herbivores is increasingly used to achieve these aims. We investigated how grazing, resistance traits of plants (concerning herbivory) and associational resistance interact and affect the establishment pattern of woody species on abandoned arable land (N-Belgium, W-Europe). In these early successional tree assemblages, we tested whether grazing increased or decreased spatial heterogeneity, which is supposed to be a crucial factor for biodiversity.With repeated measurements, 2-3 and 5-7 years after the cessation of agricultural use, we sampled 87 grazed and 56 ungrazed plots (314 m2) in 14 sampling areas (former arable land) on nutrient rich, (sandy) loam soils. We recorded established tree frequencies, related to grazing, time, resistance traits and unpalatable/spiny vegetation cover in the herb and low shrub layer. We investigated horizontal and vertical heterogeneity using variances in establishment frequencies and variances in frequencies of trees that were able to grow beyond the browse line, respectively.We found massive colonisation of grazing tolerant and resistant woody species in early successional stages. Grazing decreased frequencies and height of the most abundant tolerant species (mainly Salix caprea L.). After 5-7 years, frequencies of defensive and tolerant species were equal, but the former (mainly Betula pendula Roth) were able to grow beyond the browse line. When the cover of unpalatable/spiny vegetation was high enough (>60% of plot size), it also provided suitable nurse sites for tolerant species to grow out. In early assemblages, grazing increased horizontal and vertical heterogeneity, resulting in intermediate successional stages. In the long-term, the mechanism of associational resistance will also allow non-resistant and tolerant species to grow beyond the browse line and promote forest succession and the order of species establishment and replacement.  相似文献   

15.
Recent arctic warming experiments have recorded significant vegetation responses, typically an increase in shrub cover and a loss of species richness. We report similar changes in vegetation along an arctic mountainside in northern Sweden over 20 years. During this time mean annual temperature increased by 2.0 °C, and growing season temperature by 2.3 °C. Growing season length increased by 28% at the bottom of our study area, in birch forest, and by 175% on the mountaintop. Neither total vegetation cover nor the cover of bare ground changed. One common dwarf shrub, Empetrum hermaphroditum , and two common forbs, Viola biflora and Geranium sylvaticum , increased in abundance over time, but no common species moved up the gradient. Species richness declined significantly over time, with an average loss of two species per 50 cm × 100 cm plot. The richness of herbaceous species at intermediate altitudes decreased significantly with increasing shrub cover. In spite of large changes in temperature, the type and magnitude of vegetation change along this mountainside were relatively modest and consistent with those from wide-spread warming experiments.  相似文献   

16.
In this long-term study, we examined the invasion by the exotic shrub glossy buckthorn (Rhamnus frangula L.) and the response of co-occurring plants in a large, undisturbed wetland. We first sampled the vegetation in 1991 and repeated the sample 15 years later using the same, permanently located sample units (n = 165). Despite dramatic increases in the abundance of buckthorn, the invasion elicited little apparent response by the resident plant community. Species richness and cover in the herbaceous plant stratum had no apparent relationship with change in buckthorn cover. The number of shrub species other than buckthorn showed no relationship with change in buckthorn cover, but the cover of other shrubs decreased as buckthorn cover increased. Species composition changed independently of changes in buckthorn cover. These results show that dramatic increases in the abundance of an invasive species do not necessarily cause large changes in the native plant community and suggest disturbance history influences community response to invasion.  相似文献   

17.
ABSTRACT Although habitat attributes of black-tailed prairie dog (Cynomys ludovicianus) colonies have been described for central and northern portions of the species' geographic range, little is known about these associations at the southern edge of this species' distribution. Because high-quality habitats are expected to be scarcer at the edge of the species' geographic range, different patterns of habitat selection might emerge in these populations. We analyzed habitat selection by black-tailed prairie dogs in a human-disturbed mosaic of desert grasslands and shrublands in northwestern Chihuahua, Mexico. We contrasted 151 used and 133 unused habitat units producing 11 case-control logistic regression models to explain site occupancy by prairie dogs with different combinations of environmental variables. Prairie dogs from Chihuahua occupy sites similar in most respects to sites in more northern regions, although these prairie dogs appear to be more tolerant of increased shrub density and reduced herbage cover. We found that site occupancy was best modeled by positive effects of soil moisture level, cover of forbs, cover of unpalatable vegetation, cover of bare ground, and amount of prairie-dog colony area within 1 km and by the inverse of altitude, shrub density, herbage height, and amount of hostile habitat within 1 km. The 2 most significant variables were herbage height and shrub density, which might reflect the prominent role that visibility plays in habitat selection by prairie dogs. In contrast, we found weak evidence that human features have significant impacts on site occupancy by prairie dogs. Our results support the prediction that environmental conditions of sites used by prairie dogs in edge regions partially differ from those observed in more northern latitudes. We suggest that reserve managers focus conservation efforts on areas with short vegetation, low density of shrubs, and high herbage cover, conditions that could be promoted by controlled burns, herbage mowing, and mechanical removal of shrubs.  相似文献   

18.
I conducted small-mammal trapping surveys on a desert scrub restoration site in Palm Springs, California, to document concomitant recovery of the rodent community. These surveys were conducted following quantitative vegetation sampling efforts that indicated that a predefined successful restoration criterion of 15% total shrub cover had been met throughout most of the area. But shrub cover, native shrub cover, herb cover, native herb cover, total cover, and total native cover remained significantly lower in the restoration area than in undeveloped desert scrub immediately surrounding the site. Native herb species richness was also generally lower in the restoration area. Despite these vegetation differences, rodent diversity, evenness, and abundance were very similar between the restoration and natural areas (they were consistently slightly higher in the restoration area). More diverse microhabitats, proximity to water, and reduced competition with harvester ants may have contributed to this outcome. If ecosystem restoration is the goal, reestablishment of a faunal community in restored habitat, rather than surpassing a predefined percent cover of vegetation, may be a better indicator of success, because plant cover proved to be a poor predictor of mammal success.  相似文献   

19.
高原鼢鼠推土造丘行为对高寒草地生态系统的生产和生态功能有重要影响,研究高原鼢鼠土丘空间分布格局及其与环境因子的关系,可以揭示高原鼢鼠栖息地利用和选择规律,为合理控制鼠害及保护草地生物多样性提供科学依据。于2014年8月在祁连山东段选取面积为140m×100m的高原鼢鼠栖息地,消除景观尺度取样带来的气候、地形和土壤的异质性,利用地统计学方法,分析高原鼢鼠土丘的空间分布格局、并揭示其与环境因子中土壤容重、土壤水分、植物地上、地下生物量、根系营养物质含量(可溶性糖、粗蛋白、粗脂肪)以及各功能群丰富度(禾本科、莎草科、杂类草)的空间关系。半方差函数及普通克里格插值表明,高原鼢鼠土丘存在中等程度的空间变异且呈现聚集分布,各环境因子均存在不同程度的空间异质性。交方差函数分析表明,高原鼢鼠分布虽与各环境因子在多种尺度下表现出复杂的空间关联性(正的或负的),但mantel检验发现土壤容重、莎草科丰富度与高原鼢鼠土丘分布呈现显著的负空间关联性,杂类草丰富度和根系粗脂肪含量与高原鼢鼠土丘分布存在显著正空间关联性。综上所述,高原鼢鼠主要栖息利用在土壤疏松、莎草科丰富度较低、杂类草较多和根系粗脂肪含量较高的地方。  相似文献   

20.
Abstract Invasive woody species frequently change the composition of the established vegetation and the properties of the soil under their canopies. Accordingly, invasion may well affect regenerative phases of the community, especially at the seed bank level, likely influencing community restoration. Pyracantha angustifolia (Rosaceae) is an invasive shrub in central Argentina that affects woody recruitment, particularly enhancing the recruitment of other exotic woody species. There is though no information regarding its effect on the soil seed bank within the invaded community. The present study was set up to gain further insight into the canopy effects of P. angustifolia. We aimed to assess whether the invasive shrub affects seed bank composition, richness and seed density as compared with the dominant native shrub Condalia montana (Rhamnaceae), and to relate the observed seed bank patterns with those of the established vegetation. We evaluated the composition of the germinable seed bank and the established vegetation under the canopy of 16 shrubs of P. angustifolia, 16 shrubs of C. montana, and in 16 control plots (10 m2) without shrub cover. The floristic composition of the seed bank differed among canopy treatments. However, seed bank richness did not differ significantly. There was an overall high seed density of exotic species throughout the study site, though exotic forbs showed significantly lower seed densities under the invasive shrub. Pyracantha angustifolia would not promote the incorporation of new species into the seed bank of the invaded community but rather favour the establishment of woody species that do not depend on seed banks. The absence of dominant woody species in the seed bank, the dominance of exotic forbs, and the high similarity between established exotic species and those present in the seed bank may surely affect community restoration following the main disturbances events observed in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号