首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of cell adhesion molecules in neurite outgrowth on Müller cells   总被引:3,自引:0,他引:3  
The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.  相似文献   

2.
Monolayers of control 3T3 fibroblasts and 3T3 cells expressing transfected NCAM or N-cadherin have been used as a culture substratum for rat hippocampal neurons. Both NCAM and N-cadherin are expressed in the hippocampus through embryonic day 17 (E17) to postnatal day 4 (PND4); however, whereas E17 neurons responded to transfected NCAM by extending considerably longer neurites, PND4 neurons responded very poorly. The converse was true for responsiveness to N-cadherin. These data demonstrate a switch in neuronal responsiveness to NCAM and N-cadherin in the developing hippocampus. NCAM-dependent neurite outgrowth from E17 neurons was largely dependent on the presence of alpha 2-8-linked polysialic acid (PSA) on neuronal NCAM. NCAM-dependent neurite outgrowth could be fully inhibited by pertussis toxin or a combination of L- and N-type calcium channel antagonists thus providing direct evidence concerning the nature of the second messenger pathway activated in primary neurons by cell adhesion molecules (CAMs).  相似文献   

3.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not directly activate this pathway in PC12 cells. However, the presence of GM1 (12.5-100 micrograms/ml) in the co-culture was associated with a potentiation of NCAM and N-cadherin-dependent neurite outgrowth. Treatment of PC12 cells with GM1 (100 micrograms/ml) for 90 min led to trypsin-stable increases in both beta-cholera toxin binding to PC12 cells and an enhanced neurite outgrowth response to N-cadherin. The ganglioside response could be fully inhibited by treatment with pertussis toxin. These data are consistent with exogenous gangliosides enhancing neuritic growth by promoting cell adhesion molecule-induced calcium influx into neurons.  相似文献   

4.
Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2(+)-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CG) neurons. beta 1-class integrin ECM receptor heterodimers function less prominently in E8 and not at all in E14 neurite outgrowth on astrocytes. The lack of effect of integrin beta 1 antibodies on E14 neurite outgrowth reflects an apparent loss of integrin function, as assayed by E14 neuronal attachment and process outgrowth on laminin. N-CAM appeared not to be required for neurite outgrowth by either E8 or E14 neurons. Since N-cadherin and integrin beta 1 antibodies together virtually eliminated E8 CG neurite outgrowth on cultured astrocytes, these two neuronal receptors are probably important in regulating axon growth on astroglia in vivo.  相似文献   

5.
Fibroblast growth factor receptors (FGFRs) and N-cadherin both regulate axon extension in developing Xenopus retinal ganglion cells (RGCs). Cultured cerebellar neurons have been shown to require FGFR activity for N-cadherin–stimulated neurite outgrowth, raising the possibility that N-cadherin is a FGFR ligand. To investigate this possibility in the developing visual system, retinal neurons were transfected with a dominant-negative FGFR (XFD) and plated on purified N-cadherin substrates. XFD-expressing neurons extended markedly shorter processes than control GFP-expressing neurons, implicating a role for FGFRs in N-cadherin–stimulated neurite outgrowth. To examine whether N-cadherin and FGFRs share the same pathway or use distinct second messenger pathways, specific inhibitors of implicated signaling molecules were added to neurons stimulated by N-cadherin, basic fibroblast growth factor (bFGF), or brain-derived nerve factor (BDNF) (which stimulates RGC outgrowth by a FGFR-independent mechanism). Diacylglycerol (DAG) lipase and Ca2+/calmodulin kinase II inhibitors both significantly reduced outgrowth stimulated by N-cadherin or bFGF but not by BDNF. Furthermore, we show that inhibiting DAG lipase activity in RGC axons extending in vivo toward the optic tectum reversibly slows axon extension without collapsing their growth cones. Thus, a common second-messenger signaling pathway mediating both N-cadherin– and bFGF-stimulated neurite extension is consistent with a model in which N-cadherin directly modulates the FGFR or a model whereby both FGFR and N-cadherin regulate the same second-messenger system. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 633–641, 1998  相似文献   

6.
Binding of the neural cell adhesion molecule (NCAM) in neurons to NCAM on non-neuronal cells can stimulate axonal growth. A developmentally regulated loss of this response is associated with the insertion of 10 amino acids (called VASE) into the fourth Ig domain in up to 50% of the NCAM receptors in neurons. In the present study we have transfected PC12 cells with the major neuronal isoforms of human NCAM and tested cells expressing these isoforms for their ability to respond to NCAM in a cellular substratum. Whereas both the 140- and 180-kD isoforms of NCAM can act as functional receptors for neurite outgrowth, the presence of the VASE sequence in a minority of the receptors specifically inhibited this response. A synthetic peptide containing the VASE sequence inhibits neurite outgrowth from PC12 cells and primary neurons stimulated by NCAM. The same peptide has no effect on integrin dependent neurite outgrowth or neurite outgrowth stimulated by N-cadherin or L1. We discuss the possibility that the VASE peptide inhibits the NCAM response by preventing NCAM from binding to the FGF receptor in the plasma membrane.  相似文献   

7.
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.  相似文献   

8.
L1-mediated axon outgrowth occurs via a homophilic binding mechanism   总被引:46,自引:0,他引:46  
V Lemmon  K L Farr  C Lagenaur 《Neuron》1989,2(6):1597-1603
The molecular mechanism by which the L1 cell adhesion molecule mediates neurite outgrowth has been examined. Purified L1 from mouse and L1 from chick brain were attached to nitrocellulose dishes. Both chick and mouse neurons were able to adhere to purified mouse L1 and chick L1. Both molecules promoted neurite extension from chick and mouse neurons. Addition of Fabs specific for chick L1 to the cultures inhibited chick neurite outgrowth on both mouse L1 and chick L1. These findings suggest that L1-like molecules support neurite outgrowth via a "homophilic" binding mechanism.  相似文献   

9.
The neural cell adhesion molecule (NCAM) has been reported to stimulate neuritogenesis either via nonreceptor tyrosine kinases or fibroblast growth factor (FGF) receptor. Here we show that lipid raft association of NCAM is crucial for activation of the nonreceptor tyrosine kinase pathway and induction of neurite outgrowth. Transfection of hippocampal neurons of NCAM-deficient mice revealed that of the three major NCAM isoforms only NCAM140 can act as a homophilic receptor that induces neurite outgrowth. Disruption of NCAM140 raft association either by mutation of NCAM140 palmitoylation sites or by lipid raft destruction attenuates activation of the tyrosine focal adhesion kinase and extracellular signal-regulated kinase 1/2, completely blocking neurite outgrowth. Likewise, NCAM-triggered neurite outgrowth is also completely blocked by a specific FGF receptor inhibitor, indicating that cosignaling via raft-associated kinases and FGF receptor is essential for neuritogenesis.  相似文献   

10.
Different neuronal populations were used to compare the neurite outgrowth-promoting activities of N-CAM and N-cadherin expressed via gene transfer on the surface of nonneuronal cells. In contrast to a previously reported developmental loss of retinal ganglion cell responsiveness to N-CAM, these cells exhibited an increased and maintained responsiveness to N-cadherin over the same developmental period (E6-E11). N-CAM and N-cadherin responses could be specifically inhibited by their own antibodies, but not by antisera to the beta 1 integrin family or the L1/G4 glycoprotein. Cerebellar neurons showed qualitative differences in the nature of the dose-response curves for transfected N-CAM expression (highly cooperative) versus N-cadherin expression (linear). In addition "subthreshold" levels of N-CAM expression, which do not normally support neurite outgrowth, did so when coexpressed with functional levels of N-cadherin. These studies show fundamental differences in neuronal responsiveness to cell adhesion molecules and suggest a more dynamic regulation for N-CAM-dependent neurite outgrowth than for N-cadherin-dependent outgrowth.  相似文献   

11.
A chimeric molecule consisting of the extracellular domain of the adhesion molecule, N-cadherin, fused to the Fc region of human IgG (NCAD-Fc) supports calcium-dependent cell adhesion and promotes neurite outgrowth following affinity-capture to a tissue culture substrate. When presented to cerebellar neurons as a soluble molecule, the NCAD-Fc stimulated neurite outgrowth in a manner equivalent to that seen for N-cadherin expressed as a cell surface glycoprotein. Neurons expressing a dominant-negative version of the fibroblast growth factor (FGF) receptor did not respond to soluble NCAD-Fc. In cells transfected with full-length N-cadherin and the FGF receptor, antibody-clustering of N-cadherin resulted in a co-clustering of the FGF receptor to discrete patches in the cell membrane. The data demonstrate that the ability of N-cadherin to stimulate neurite outgrowth can be dissociated from its ability to function as a substrate associated adhesion molecule. The N-cadherin and the FGF receptor co-clustering in cells provides a basis for the neurite outgrowth response stimulated by N-cadherin being dependent on FGF receptor function.  相似文献   

12.
In this study we have examined how unnatural sialic acids can alter polysialic acid expression and influence the adhesive properties of the neural cell adhesion molecule (NCAM). Unnatural sialic acids are generated by metabolic conversion of synthetic N-acyl mannosamines and are typically incorporated into cell-surface glycoconjugates. However, N-butanoylmannosamine and N-pentanoylmannosamine are effective inhibitors of polysialic acid (PSA) synthesis in stably transfected HeLa cells expressing NCAM and the polysialyltransferase STX. These cells were used as substrates to examine the effect of inhibiting PSA synthesis on the development of neurons derived from the chick dorsal root ganglion. N-butanoylmannosamine blocked polysialylation of NCAM and significantly reduced neurite outgrowth comparable with enzymatic removal of PSA by endoneuraminidases. As a result, neurite outgrowth was similar to that observed for non-polysialylated NCAM. In contrast, previous studies have shown that N-propanoyl sialic acid (SiaProp), generated from N-propanoylmannosamine, is readily accepted by polysialyltransferases and permits the extension of poly(SiaProp) on NCAM. Despite being immunologically distinct, poly(SiaProp) can promote neurite outgrowth similarly to natural polysialic acid. Thus, subtle structural differences in PSA resulting from the incorporation of SiaProp residues do not alter the antiadhesive properties of polysialylated NCAM.  相似文献   

13.
Src-related nonreceptor protein tyrosine kinases in nerve growth cones (p59fyn, pp60c-src, and pp62c-yes) are potential intracellular signaling molecules for cell adhesion molecule-directed axonal growth. To determine whether src-related tyrosine kinases mediate NCAM- dependent neurite outgrowth, cultures of cerebellar and sensory neurons from fyn-, src-, and yes- minus mice were analyzed for neurite outgrowth on monolayers of NCAM140-transfected L fibroblasts. NCAM- dependent neurite outgrowth was selectively inhibited in cultures of cerebellar and dorsal root ganglion neurons from fyn-, but not src- or yes- mice. Neurite outgrowth by fyn-, src-, or yes- neurons on untransfected fibroblast monolayers was unaffected, indicating that these kinases do not contribute significantly to axon growth on at least some integrins or other adhesive substrates present on fibroblasts. This study demonstrates that p59fyn is an essential component of the NCAM signaling pathway leading to axonal growth.  相似文献   

14.
Retinal axon pathfinding from the retina into the optic nerve involves the growth promoting axon guidance molecules L1, laminin and netrin 1, each of which governs axon behavior at specific regions along the retinal pathway. In identifying additional molecules regulating this process during embryonic mouse development, we found that transmembrane Semaphorin5A mRNA and protein was specifically expressed in neuroepithelial cells surrounding retinal axons at the optic disc and along the optic nerve. Given that growth cone responses to a specific guidance molecule can be altered by co-exposure to a second guidance cue, we examined whether retinal axon responses to Sema5A were modulated by other guidance signals axons encountered along the retinal pathway. In growth cone collapse, substratum choice and neurite outgrowth assays, Sema5A triggered an invariant inhibitory response in the context of L1, laminin, or netrin 1 signaling, suggesting that Sema5A inhibited retinal axons throughout their course at the optic disc and nerve. Antibody-perturbation studies in living embryo preparations showed that blocking of Sema5A function led to retinal axons straying out of the optic nerve bundle, indicating that Sema5A normally helped ensheath the retinal pathway. Thus, development of some CNS nerves requires inhibitory sheaths to maintain integrity. Furthermore, this function is accomplished using molecules such as Sema5A that exhibit conserved inhibitory responses in the presence of co-impinging signals from multiple families of guidance molecules.  相似文献   

15.
In the developing mammalian central nervous system astrocytes have been proposed as an important substrate for axon growth. In the adult central nervous system following injury, astrocytes are a major component of the gliotic response which has been proposed to block axon growth. Experimental transplantation studies using cultured astrocytes have suggested that immature but not mature cultured astrocytes have the capacity to support axon outgrowth when transplanted into the adult rodent CNS. These observations suggest that astrocyte maturation is accompanied by changes in the functional capacity of these cells to support axon outgrowth. To determine whether this functional change reflects an intrisic astrocyte property, the extent and molecular bases of neurite outgrowth from embryonic rat cortical and chick retinal neurons on cultures of purified immature and mature astrocytes have been compared in vitro. The rate and extent of neurite outgrowth from both neuronal populations are consistently greater over the surface of immature than over the surface of mature astrocytes. Furthermore, antibodies to NCAM and G4/L1 significantly reduce neurite outgrowth on immature but not mature astrocytes, while antibodies to the integrin B1 receptor reduced outgrowth on both immature and, to a lesser extent, mature astrocytes. These results suggest that in vitro mature astrocytes have a reduced capacity and different molecular bases for supporting neurite outgrowth compared to immature astrocytes and are consistent with the proposal that functional changes during astrocyte maturation may partially contribute to regulating axon growth in the mammalian CNS.  相似文献   

16.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with the failure of these older neurons to respond to the transfected human neural cell adhesion molecule (NCAM). Human L1-dependent neurite outgrowth could be blocked by antibodies that bound to rat L1 and, additionally, the response could be fully inhibited by pertussis toxin and substantially inhibited by antagonists of L- and N-type calcium channels. Calcium influx into neurons induced by K+ depolarization fully mimics the L1 response. Furthermore, we show that L1- and K+(-)dependent neurite outgrowth can be specifically inhibited by a reduction in extracellular calcium to 0.25 microM, and by pretreatment of cerebellar neurons with the intracellular calcium chelator BAPTA/AM. In contrast, the response was not inhibited by heparin or by removal of polysialic acid from neuronal NCAM both of which substantially inhibit NCAM-dependent neurite outgrowth. These data demonstrate that whereas NCAM and L1 promote neurite outgrowth via activation of a common CAM-specific second messenger pathway in neurons, neuronal responsiveness to NCAM and L1 is not coordinately regulated via posttranslational processing of NCAM. The fact that NCAM- and L1-dependent neurite outgrowth, but not adhesion, are calcium dependent provides further evidence that adhesion per se does not directly contribute to neurite outgrowth.  相似文献   

17.
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.  相似文献   

18.
N-cadherin is the predominant mediator of calcium-dependent adhesion in the nervous system (Takeichi, M. 1988. Development (Camb.). 102: 639-655). Investigations using antibodies to block N-cadherin function (Bixby, J.L., R.L. Pratt, J. Lilien, and L.F. Reichardt. 1987. Proc. Natl. Acad. Sci. USA. 84:2555-2569; Bixby, J.L., J. Lilien, and L.F. Reichardt. 1988. J. Cell Biol. 107:353-362; Tomaselli, K.J., K.N. Neugebauer, J.L. Bixby, J. Lilien, and L.F. Reichardt. 1988. Neuron. 1:33-43) or transfection of the N-cadherin gene into heterologous cell lines (Matsunaga, M., K. Hatta, A. Nagafuchi, and M. Takeichi. 1988. Nature (Lond.). 334:62-64) have provided evidence that N-cadherin, alone or in combination with other molecules, can participate in the induction of neurite extension. We have developed an affinity purification procedure for the isolation of whole N-cadherin from chick brain and have used the isolated protein as a substrate for neurite outgrowth. N-cadherin promotes the rapid extension of neurites from chick ciliary ganglion neurons, which extend few or no neurites on adhesive but noninducing substrates such as polylysine, tissue culture plastic, and collagens. N-cadherin is extremely potent, more so than the L1 adhesion molecule, and comparable to the extracellular matrix protein laminin. Compared to laminin, however. N-cadherin promotes outgrowth from ciliary ganglion neurons extremely rapidly and with a distinct morphology. These results provide a direct demonstration that N-cadherin is sufficient to induce neurite outgrowth when substrate bound and suggest that the mechanism(s) involved may differ from that induced by laminin.  相似文献   

19.
目的探索神经细胞粘附分子(NCAM)促进神经突生长的分子机制。方法对新生小鼠脑组织行免疫共沉淀以筛选NCAM的结合伴侣。向体外培养的海马神经元中加入免疫共沉淀的阳性筛选分子的抑制剂,观察其对NCAM促进神经突生长作用的影响。提取新生小鼠脑内生长锥以及脂筏,检测NCAM、NCAM的结合伴侣及其上、下游分子在小鼠脑内的空间分布。结果免疫共沉淀发现P21活化激酶1(Pak1)为NCAM的结合伴侣,Pak1抑制剂可以阻断NCAM促进神经突生长的作用。对小鼠脑内脂筏的研究发现NCAM和Pak1上游激活物Pak相互作用交换因子(PIX)、细胞分裂周期蛋白42(Cdc42)在生长锥脂筏上富集,提示NCAM与Pak1的结合以及Pak1的活化可能在脂筏上完成。结论 NCAM通过Pak1途径促进神经突生长,且这一作用的实现可能依赖于脂筏。  相似文献   

20.
GAP-43 regulates NCAM-180-mediated neurite outgrowth   总被引:6,自引:0,他引:6  
The neural cell adhesion molecule (NCAM), and the growth-associated protein (GAP-43), play pivotal roles in neuronal development and plasticity and possess interdependent functions. However, the mechanisms underlying the functional association of GAP-43 and NCAM have not been elucidated. In this study we show that (over)expression of GAP-43 in PC12E2 cells and hippocampal neurons strongly potentiates neurite extension, both in the absence and in the presence of homophilic NCAM binding. This potentiation is crucially dependent on the membrane association of GAP-43. We demonstrate that phosphorylation of GAP-43 by protein kinase C (PKC) as well as by casein kinase II (CKII) is important for the NCAM-induced neurite outgrowth. Moreover, our results indicate that in the presence of GAP-43, NCAM-induced neurite outgrowth requires functional association of NCAM-180/spectrin/GAP-43, whereas in the absence of GAP-43, the NCAM-140/non-receptor tyrosine kinase (Fyn)-associated signaling pathway is pivotal. Thus, expression of GAP-43 presumably acts as a functional switch for NCAM-180-induced signaling. This suggests that under physiological conditions, spatial and/or temporal changes of the localization of GAP-43 and NCAM on the cell membrane may determine the predominant signaling mechanism triggered by homophilic NCAM binding: NCAM-180/spectrin-mediated modulation of the actin cytoskeleton, NCAM-140-mediated activation of Fyn, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号