首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cholera toxin (CT) enters host cells by binding to ganglioside GM1 in the apical plasma membrane (PM). GM1 carries CT retrograde from the PM to the endoplasmic reticulum (ER), where a portion of the toxin, the A1-chain, retro-translocates to the cytosol, causing disease. Trafficking in this pathway appears to depend on the association of CT–GM1 complexes with sphingomyelin (SM)- and cholesterol-rich membrane microdomains termed lipid rafts. Here, we find that in polarized intestinal epithelia, the conversion of apical membrane SM to ceramide by bacterial sphingomyelinase attenuates CT toxicity, consistent with the lipid raft hypothesis. The effect is reversible, specific to toxin entry via the apical membrane, and recapitulated by the addition of exogenous long-chain ceramides. Conversion of apical membrane SM to ceramide inhibits the efficiency of toxin endocytosis, but retrograde trafficking from the apical PM to the Golgi and ER is not affected. This result suggests that the cause for toxin resistance occurs at steps required for retro-translocation of the CT A1-chain to the cytosol.  相似文献   

2.
Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.  相似文献   

3.
Cholera toxin (CT) produced by Vibrio cholerae is the virulence factor responsible for the massive secretory diarrhea seen in Asiatic cholera. To cause disease, CT enters the intestinal epithelial cell as a stably folded protein by co-opting a lipid-based membrane receptor, ganglioside G(M1). G(M1) sorts the toxin into lipid rafts and a retrograde trafficking pathway to the endoplasmic reticulum, where the toxin unfolds and transfers its enzymatic subunit to the cytosol, probably by dislocation through the translocon sec61p. The molecular determinants that drive entry of CT into this pathway are encoded entirely within the structure of the protein toxin itself.  相似文献   

4.
In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951–962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd ≈ 5 nM), only CT elicited a cAMP-dependent Cl secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.  相似文献   

5.
Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an increase in intracellular cAMP, which results in apical chloride secretion. Here, we find that an intact actin cytoskeleton is necessary for the efficient transport of CT to the Golgi and for subsequent activation of adenylyl cyclase. CT bound to GM1 on the cell membrane fractionates with a heterogeneous population of lipid rafts, a portion of which is enriched in actin and other cytoskeletal proteins. In this actin-rich fraction of lipid rafts, CT and actin colocalize on the same membrane microdomains, suggesting a possible functional association. Depolymerization or stabilization of actin filaments interferes with transport of CT from the PM to the Golgi and reduces the levels of cAMP generated in the cytosol. Depletion of membrane cholesterol, which also inhibits CT trafficking to the TGN, causes displacement of actin from the lipid rafts while CT remains stably raft associated. On the basis of these observations, we propose that the CT-GM1 complex is associated with the actin cytoskeleton via the lipid rafts and that the actin cytoskeleton plays a role in trafficking of CT from the PM to the Golgi/ER and the subsequent activation of adenylyl cyclase. membrane microdomains; membrane lipids; bacterial toxins; endocytosis; intestinal mucosa  相似文献   

6.
Entry of cholera toxin (CT) into target epithelial cells and the induction of toxicity depend on CT binding to the lipid-based receptor ganglioside G(M1) and association with detergent-insoluble membrane microdomains, a function of the toxin's B-subunit. The B-subunits of CT and related Escherichia coli toxins exhibit a highly conserved exposed peptide loop (Glu(51)-Ile(58)) that faces the cell membrane upon B-subunit binding to G(M1). Mutation of His(57) to Ala in this loop resulted in a toxin (CT-H57A) that bound G(M1) with high apparent affinity, but failed to induce toxicity. CT-H57A bound to only a fraction of the cell-surface receptors available to wild-type CT. The bulk of cell-surface receptors inaccessible to CT-H57A localized to detergent-insoluble apical membrane microdomains (lipid rafts). Compared with wild-type toxin, CT-H57A exhibited slightly lower apparent binding affinity for and less stable binding to G(M1) in vitro. Rather than being transported into the Golgi apparatus, a process required for toxicity, most of CT-H57A was rapidly released from intact cells at physiologic temperatures or degraded following its internalization. These data indicate that CT action depends on the stable formation of the CT B-subunit.G(M1) complex and provide evidence that G(M1) functions as a necessary sorting motif for the retrograde trafficking of toxin into the secretory pathway of target epithelial cells.  相似文献   

7.
The interaction of cholera toxin with planar bilayer lipid membranes (BLM) at low pH results in the formation of ionic channels, the conductance of which can be directly measured in voltage-clamp experiments. It is found that the B-subunit of cholera toxin (CT-B) also is able to induce ionic channels in BLM whereas the A-subunit is not able to do it. The increase of pH inhibited the channel-forming activity of CT-B. The investigation of pH-dependences of both the conductance and the cation-anion selectivity of the CT-B channel allowed us to suggest that the water pore of this channel is confined to the B-subunit of cholera toxin. The effective diameter of the CT-B channels water pores was directly measured in BLM and is equal to 2.1 +/- 0.2 nm. The channels formed by whole toxin and its B-subunit exhibit voltage-dependent activity. We believe these channels are relevant to the mode of action of cholera toxin and especially to the endosomal pathway of the A-subunit into cells.  相似文献   

8.
To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipid rafts and lipid raft function. To test this idea, we examined whether CT action in human intestinal T84 cells depends on membrane cholesterol. Chelation of cholesterol with 2-hydroxypropyl beta-cyclodextrin or methyl beta-cyclodextrin reversibly inhibited CT-induced chloride secretion and prolonged the time required for CT to enter the cell and induce toxicity. These effects were specific to CT, as identical conditions did not alter the potency or toxicity of anthrax edema toxin that enters the cell by another mechanism. We found that endocytosis and trafficking of CT into the Golgi apparatus depended on membrane cholesterol. Cholesterol depletion also changed the density and specific protein content of CT-associated lipid raft fractions but did not entirely displace the CT-G(M1) complex from these lipid raft microdomains. Taken together these data imply that cholesterol may function to couple the CT-G(M1) complex with raft domains and with other membrane components of the lipid raft required for CT entry into the cell.  相似文献   

9.
We analyzed the role of gangliosides in the association of the ErbB2 receptor tyrosine-kinase (RTK) with lipid rafts in mammary epithelial HC11 cells. Scanning confocal microscopy experiments revealed a strict ErbB2-GM3 colocalization in wild-type cells. In addition, analysis of membrane fractions obtained using a linear sucrose gradient showed that ErbB2, epidermal growth factor receptor (EGFR) and Shc-p66 (proteins correlated with the ErbB2 signal transduction pathway) were preferentially enriched in lipid rafts together with gangliosides. Blocking of endogenous ganglioside synthesis by (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP) induced a drastic cell-surface redistribution of ErbB2, EGFR and Shc-p66, within the Triton-soluble fractions, as revealed by linear sucrose-gradient analysis. This redistribution was partially reverted when exogenous GM3 was added to ganglioside-depleted HC11 cells. The results point out the key role of ganglioside GM3 in retaining ErbB2 and signal-transduction-correlated proteins in lipid rafts.  相似文献   

10.
Little is known about the organization of lipids in biomembranes. Lipid rafts are defined as sphingolipid- and cholesterol-rich clusters in the membrane. Details of the lipid distribution of lipid rafts are not well characterized mainly because of a lack of appropriate probes. Ganglioside GM1-specific protein, cholera toxin, has long been the only lipid probe of lipid rafts. Recently it was shown that earthworm toxin, lysenin, specifically recognizes sphingomyelin-rich membrane domains. Binding of lysenin to sphingomyelin is accompanied by the oligomerization of the toxin that leads to pore formation in the target membrane. In this study, we generated a truncated lysenin mutant that does not oligomerize and thus is non-toxic. Using this mutant lysenin, we showed that plasma membrane sphingomyelin-rich domains are spatially distinct from ganglioside GM1-rich membrane domains in Jurkat T cells. Like T cell receptor activation and cross-linking of GM1, cross-linking of sphingomyelin induced calcium influx and ERK phosphorylation in the cell. However, unlike CD3 or GM1, cross-linking of sphingomyelin did not induce significant protein tyrosine phosphorylation. Combination of lysenin and sphingomyelinase treatment suggested the involvement of G-protein-coupled receptor in sphingomyelin-mediated signal transduction. These results thus suggest that the sphingomyelin-rich domain provides a functional signal cascade platform that is distinct from those provided by T cell receptor or GM1. Our study therefore elucidates the spatial and functional heterogeneity of lipid rafts.  相似文献   

11.
Cholera toxin (CT) travels from the cell surface to the endoplasmic reticulum (ER) as an AB holotoxin. ER-specific conditions then promote the dissociation of the catalytic CTA1 subunit from the rest of the toxin. CTA1 is held in a stable conformation by its assembly in the CT holotoxin, but the dissociated CTA1 subunit is an unstable protein that spontaneously assumes a disordered state at physiological temperature. This unfolding event triggers the ER-to-cytosol translocation of CTA1 through the quality control mechanism of ER-associated degradation. The translocated pool of CTA1 must regain a folded, active structure to modify its G protein target which is located in lipid rafts at the cytoplasmic face of the plasma membrane. Here, we report that lipid rafts place disordered CTA1 in a functional conformation. The hydrophobic C-terminal domain of CTA1 is essential for binding to the plasma membrane and lipid rafts. These interactions inhibit the temperature-induced unfolding of CTA1. Moreover, lipid rafts could promote a gain of structure in the disordered, 37 °C conformation of CTA1. This gain of structure corresponded to a gain of function: whereas CTA1 by itself exhibited minimal in vitro activity at 37 °C, exposure to lipid rafts resulted in substantial toxin activity at 37 °C. In vivo, the disruption of lipid rafts with filipin substantially reduced the activity of cytosolic CTA1. Lipid rafts thus exhibit a chaperone-like function that returns disordered CTA1 to an active state and is required for the optimal in vivo activity of CTA1.  相似文献   

12.
Cholera toxin (CT) and related AB5-subunit toxins move from the plasma membrane through the trans-Golgi and endoplasmic reticulum (ER) to the cytosol of host cells. The toxins exploit a specific glycolipid pathway rather than a protein pathway. They bind glycolipids that associate with lipid rafts at the cell surface, which carry the toxins retrograde to the Golgi and ER. In the ER, the A1-chain of the CT unfolds and enters the cytosol by hijacking the cellular machinery that enables misfolded proteins to cross the membrane for degradation by the proteasome, a process termed retro-translocation. Upon entering the cytosol, the A1-chain rapidly refolds, avoids the proteasome and induces toxicity.  相似文献   

13.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

14.
In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.  相似文献   

15.
We report for the first time the detection of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Cholera toxin β (CTβ), which binds to the raft-enriched ganglioside GM1, was selected to label rafts. In a novel application a Qdot reagent was used to detect CTβ labeling. This is the first reported use of nanocrystals in mammalian embryo imaging. Comparative membrane labeling with CTβ and lipophilic membrane dyes containing saturated or unsaturated aliphatic tails showed that the detection of GM1 in mouse oocytes and embryo membranes was consistent with the identification of cholesterol- and sphingolipid-enriched rafts in the cell membrane. Distribution of the GM1 was compared with the known distribution of non-raft membrane components, and disruption of membrane rafts with detergents confirmed the cholesterol dependence of GM1 on lipid raft labeling. Complementary functional studies showed that cholesterol depletion using methyl-β-cyclodextrin inhibited preimplantation development in culture. Our results show that the membranes of the mouse oocyte and zygote are rich in lipid rafts, with heterogeneous and stage-dependent distribution. In dividing embryos, the rafts were clearly associated with the cleavage furrow. At the morula stage, rafts were also apically enriched in each blastomere. In blastocysts, rafts were detectable in the trophectoderm layer, but could not be detected in the inner cell mass without prior fixation and permeabilization of the embryo. Lipid rafts and their associated proteins are, therefore, spatio-temporally positioned to a play a critical role in preimplantation developmental events.  相似文献   

16.
Mastoparan, a wasp venom toxin, has various pharmacological activities, the mechanisms of which are still unknown. To clarify the action of mastoparan on G protein-coupled receptor-mediated signaling, we previously examined the effect of mastoparan on G(q)-mediated signaling and demonstrated that mastoparan binds to gangliosides causing a decrease in Galpha(q/11) content in lipid rafts, and resulting in the inhibition of G(q)-mediated phosphoinositide hydrolysis (Sugama et al., Mol. Pharmacol., 68, 1466, 2005). In the present study, we examined the effect of mastoparan on beta-adrenoceptor-G(s) signaling in 1321N1 human astrocytoma cells. Mastoparan inhibited isoproterenol-induced elevation of cyclic AMP in a concentration-dependent manner. Although mastoparan is known to be an activator of G(i), pertussis toxin only slightly attenuated mastoparan-induced inhibition of cyclic AMP elevation, suggesting that a major part of the inhibition of cyclic AMP elevation induced by mastoparan is not mediated by Galpha(i). By contrast, mastoparan-induced inhibition of cyclic AMP elevation was clearly attenuated by preincubation of the cells with ganglioside mixtures. Moreover, mastoparan changed the localization of Galpha(s) in lipid rafts without disrupting the structure of lipid rafts. Fluorescent staining analysis showed that mastoparan released GFP-Galpha(s) from plasma membranes into the cytosol. These results suggest that the mastoparan-induced suppression of cyclic AMP elevation is mainly caused by changing the localization of Galpha(s) in lipid rafts into a compartment in the cellular interior where it is not available to activate adenylyl cyclase.  相似文献   

17.
The bacterial protein toxin of Vibrio cholerae, cholera toxin, is a major agent involved in severe diarrhoeal disease. Cholera toxin is a member of the AB toxin family and is composed of a catalytically active heterodimeric A-subunit linked with a homopentameric B-subunit. Upon binding to its receptor, GM0(1), cholera toxin is internalized and transported in a retrograde manner through the Golgi to the ER, where it is retrotranslocated to the cytosol. Here, cholera toxin reaches its intracellular target, the basolaterally located adenylate cyclase which becomes constitutively activated after toxin-induced mono-ADP-ribosylation of the regulating G(S)-protein. Elevated intracellular cAMP levels provoke loss of water and electrolytes which is manifested as the typical diarrhoea. The cholera toxin B-subunit displays the capacity to fortify immune responses to certain antigens, to act as a carrier and to be competent in inducing immunological tolerance. These unique features make cholera toxin a promising tool for immunologists.  相似文献   

18.
Many bacterial toxins bind to and gain entrance to target cells through specific interactions with membrane components. Using neutron reflectivity, we have characterized the structure of mixed DPPE:GM(1) lipid monolayers before and during the binding of cholera toxin (CTAB(5)) or its B-subunit (CTB(5)). Structural parameters such as the density and thickness of the lipid layer, extension of the GM(1) oligosaccharide headgroup, and orientation and position of the protein upon binding are reported. The density of the lipid layer was found to decrease slightly upon protein binding. However, the A-subunit of the whole toxin is clearly located below the B-pentameric ring, away from the monolayer, and does not penetrate into the lipid layer before enzymatic cleavage. Using Monte Carlo simulations, the observed monolayer expansion was found to be consistent with geometrical constraints imposed on DPPE by multivalent binding of GM(1) by the toxin. Our findings suggest that the mechanism of membrane translocation by the protein may be aided by alterations in lipid packing.  相似文献   

19.
125I-labelled heat-labile toxin (from Escherichia coli) and 125I-labelled cholera toxin bound to immobilized ganglioside GM1 and Balb/c 3T3 cell membranes with identical specificities, i.e. each toxin inhibited binding of the other. Binding of both toxins to Balb/c 3T3 cell membranes was saturable, with 50% of maximal binding occurring at 0.3 nM for cholera toxin and 1.1 nM for heat-labile toxin, and the number of sites for each toxin was similar. The results suggest that both toxins recognize the same receptor, namely ganglioside GM1. In contrast, binding of 125I-heat-labile toxin to rabbit intestinal brush borders at 0 degree C was not inhibited by cholera toxin, although heat-labile toxin inhibited 125I-cholera toxin binding. In addition, there were 3-10-fold more binding sites for heat-labile toxin than for cholera toxin. At 37 degrees C cholera toxin, but more particularly its B-subunit, did significantly inhibit 125I-heat-labile toxin binding. Binding of 125I-cholera toxin was saturable, with 50% maximal of binding occurring at 1-2 nM, and was quantitatively inhibited by 10(-8) M unlabelled toxin or B-subunit. By contrast, binding of 125I-heat-labile toxin was non-saturable (up to 5 nM), and 2 X 10(-7) M unlabelled B-subunit was required to quantitatively inhibit binding. Neuraminidase treatment of brush borders increased 125I-cholera toxin but not heat-labile toxin binding. Extensive digestion of membranes with Streptomyces griseus proteinase or papain did not decrease the binding of either toxin. The additional binding sites for heat-labile toxin are not gangliosides. Thin-layer chromatograms of gangliosides which were overlayed with 125I-labelled toxins showed that binding of both toxins was largely restricted to ganglioside GM1. However, 125I-heat-labile toxin was able to bind to brush-border galactoproteins resolved by SDS/polyacrylamide-gel electrophoresis and transferred to nitrocellulose.  相似文献   

20.
Lateral assemblies of sphingolipids, glycosphingolipids and cholesterol, termed rafts, are postulated to be present in biological membranes and to function in important cellular phenomena. We probed whether rafts are heterogeneous by determining the relative distribution of two gangliosides, GM1 and GD3, in artificial supported monolayers, in intact rat primary cerebellar granule neurones, and in membrane rafts isolated from rat cerebellum. Fluorescence resonance energy transfer (FRET) using fluorophore-labelled cholera toxin B subunit (which binds GM1) and mAb R24 (which binds GD3) revealed that GM1 spontaneously self-associates but does not co-cluster with GD3 in supported monolayers and on intact neurones. Cholera toxin and immunocytochemical labelling of isolated membrane rafts from rat cerebellum further demonstrated that GM1 does not co-localise with GD3. Furthermore, whereas the membrane raft resident proteins Lyn and caveolin both co-localise with GD3 in isolated membrane rafts, GM1 appears in separate and distinct aggregates. These data support prior reports that membrane rafts are heterogeneous, although the mechanisms for establishing and maintaining such heterogeneity remain to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号