首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

2.
Cytochrome P-450scc and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of a cross-linked complex and 6% of free cytochrome P-450scc was obtained after purification on cholate-Sepharose. Cytochrome P-450scc in the cross-linked complex is not reduced in the presence of NADPH and adrenodoxin reductase, but completely preserves its high spin form in the presence of Tween-20 or pregnenolone. The use of radioactive labelled adrenodoxin, chemical cleavage of cytochrome P-450scc from the cross-linked complex by o-iodosobenzoic acid and HPLC for separation of peptides demonstrated that the cytochrome P-450scc complex with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450scc, i.e., Leu 88-Trp108 and Leu368-Trp417.  相似文献   

3.
Cytochrome P-450SCC and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of cross-linked complex and 6% of free cytochrome P-450SCC was obtained after purification on cholate-Sepharose. Cytochrome P-450SCC in cross-linked complex completely preserves its high-spin form in the presence of Tween 20 or pregnenolone. Utilization of radioactively labelled adrenodoxin, chemical cleavage of cytochrome P-450SCC from cross-linked complex with o-iodosobenzoic acid and HPLC for separation of peptides allow us to conclude that the complex of cytochrome P-450SCC with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450SCC-Leu-88-Thr-107 and Leu-368-Gly-416. The cross-linked complex of adrenodoxin reductase, adrenodoxin and cytochrome P-450SCC with an apparent molecular mass of 114 kDa was obtained with N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. The composition of cross-linked complex was determined by immunoblotting and by evaluation of radioactivity using preliminary N-ethyl[2,3-14C]maleimide-modified adrenodoxin. From this data it appears that the ternary complex may exist in solution.  相似文献   

4.
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.  相似文献   

5.
Binary and ternary complexes of bovine adrenocortical mitochondrial cytochrome P-450scc with adrenodoxin and adrenodoxin reductase.adrenodoxin complex are formed in the presence of cholesterol and Emulgen 913. Both cholesterol and Emulgen 913 are required for the binding of cytochrome P-450scc with adrenodoxin. Since phospholipids are able to replace Emulgen 913 in this reaction, in vivo phospholipids of the mitochondrial inner membrane appear to play the function of the detergent. The dissociation constants of the cytochrome.adrenodoxin complex are 0.3 to 0.4 microM at 130 microM dimyristoylphosphatidylcholine and 0.9 microM at 120 microM Emulgen 913, whereas the dissociation constant for the ternary complex of cytochrome P-450scc with adrenodoxin reductase and adrenodoxin is 4.0 microM at 150 microM Emulgen 913. The stoichiometry of binary and ternary complexes reveals the 1:1 and 1:1:1 molar ratios, respectively, judging from chemical analyses after the fractionation of the complexes by gel filtration. Emulgen 913, Tween 20, ethylene glycol, myristoyllysophosphatidylcholine, dimyristoylphosphatidylcholine, and phosphatidylethanolamine show the enhanced activity of cholesterol side chain cleavage reaction with cytochrome P-450scc, adrenodoxin, adrenodoxin reductase, and NADPH. These results, in conjunction with earlier experiments, lead us to the proposal on the structure of the hydroxylase complex in the membrane and to the hypothesis on the regulation of the enzymatic activity by the availability of substrate cholesterol to the cytochrome. Hence, we propose a mobile P-450scc hypothesis for the response of the mitochondrion to adrenocorticotropic hormone stimuli.  相似文献   

6.
Bovine adrenodoxin was cross-linked to adrenodoxin reductase with 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide. Mass spectrometry showed the reaction product to be a 1:1 complex of the two proteins with Mr = 64,790 ± 50. The cross-linked complex showed cytochrome c reductase activity and could be crystallized by hanging-drop vapor diffusion. Crystals of the adrenodoxin-adrenodoxin reductase complex are hexagonal, space group P6122 or P6522, with a = 93.26 Å and c= 612.20 Å and diffract to 2.9 Å resolution at 100 K. Assuming two cross-linked complexes per asymmetric unit yields a reasonable VM of 2.97 Å3/Da. Proteins 28:289–292, 1997. © 1997 Wiley-Liss Inc.  相似文献   

7.
A stable covalent complex was prepared by cross-linking adrenodoxin reductase with adrenodoxin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was purified extensively until free components were removed completely. The major component of the complex had a molecular weight of 63 kDa, which corresponds to a 1:1 stoichiometric complex between adrenodoxin reductase and adrenodoxin. NADPH-cytochrome c reduction activity of the covalent complex was comparable to that of an equimolar mixture of adrenodoxin reductase and adrenodoxin (native complex), and the NADPH-ferricyanide reduction activity of the complex was equal to that of the native one. In contrast to the native complex, the covalent complex produced much less superoxide upon NADPH-oxidation, and the covalent complex was found to be more stable than the native complex, suggesting that the complex state is more favorable for catalysis. From these results, we conclude that the adrenodoxin molecule does not need to dissociate from the complex during electron transfer from NADPH to cytochrome c.  相似文献   

8.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1989,28(25):9777-9784
Reduction of cytochrome P-450scc(SF) (SF, substrate free) purified from bovine adrenocortical mitochondria with sodium dithionite (Na2S2O4) or with beta-NADPH mediated by catalytic amounts of adrenodoxin and adrenodoxin reductase in the presence of phenyl isocyanide produced a ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex with Soret absorbance maximum at 455 nm having a shoulder at 425 nm. On the other hand, when a preformed cytochrome P-450scc(SF)-adrenodoxin complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum showed drastic changes, i.e., an increase in intensity at 425 nm and a concomitant decrease in intensity at 455 nm. Similar spectral changes could be produced by addition of the same amount of reduced adrenodoxin afterward to the ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex. Titration experiments with adrenodoxin showed that (1) a 1:1 stoichiometric saturation of the spectral change was obtained for both the absorbance increase at 425 nm and the absorbance decrease at 455 nm, (2) there was no spectral change in the presence of 0.35 M NaCl, and (3) there was no spectral change for cytochrome P-450scc(SF) whose Lys residue(s) essential to the interaction with adrenodoxin had been covalently modified with PLP. These results suggest that ternary complex formation of ferrous cytochrome P-450scc(SF)-phenyl isocyanide with reduced adrenodoxin caused a conformational change around the ferrous heme moiety. By analysis of temperature and pH dependencies of the spectral change of the ternary complex, it was suggested that this conformational change may reflect the essential step for electron transfer from reduced adrenodoxin to the ferrous-dioxygen complex of cytochrome P-450scc.  相似文献   

9.
In order to elucidate the mechanism of the electron transfer reaction of mitochondrial steroid hydroxylase, the reduction reaction of cytochrome P-450scc (P-450scc) catalyzed by covalently cross-linked complexes between adrenodoxin reductase (AR) and adrenodoxin (AD) was studied. The reduction rate with the covalent AR-AD complex was very slow (0.030 min-1, as the flavin turnover number) compared with the reduction catalyzed by AR and AD (4.6 min-1). When free AD was added to the reaction mixture containing the AR-AD complex, the rate increased about 30 times. The AD dimer [(AD)2], and a complex between AR and the AD dimer [AR-(AD)2] were then prepared. The Vmax for the P-450scc reduction activity of AR with (AD)2 was 50% of that of AR with AD. The Km value for the total concentration of AD in the P-450scc reduction reaction mixture containing AR and (AD)2 was found to be the same as that in the reaction mixture containing AR and AD. P-450scc reduction by AR-(AD)2 was about 5 times faster than that by AR-AD. The addition of free AD to the AR-(AD)2 complex enhanced the P-450scc reduction about 30 times. AR-AD and AR-(AD)2 were able to reduce external AD, cytochrome c, and acetylated cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A cross-linked complex between bovine NADPH-adrenodoxin reductase (AR) and adrenodoxin (AD) was prepared with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and purified, as described previously [Hara, T. & Kimura, T. (1989) J. Biochem. 105, 594-600]. The covalent complex was S-pyridylethylated and digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase HPLC to identify the cross-linked peptide. Comparison of the HPLC chromatograms of the peptides showed that (i) two tandem peptides (K-4 and K-5) from AD and a peptide (K-1) from AR were missing in the chromatogram of the peptides of the covalent complex and (ii) a single new peak was observed in the chromatogram of the peptides from the covalent complex. Amino acid composition and sequence analyses showed that the newly observed peptide was a covalently cross-linked peptide formed between a peptide K-4-K-5 (Ile-25-Lys-98) derived from AD and a peptide K-1 (Ser-1-Lys-27) derived from AR, in which an amide bond had been formed between the epsilon-amino group of Lys-66 in AD and the gamma-carboxyl group of Glu-4 in AR. These results indicate that the binding site of AR with AD is localized in the amino-terminal part of AR and that of AD with AR is localized around Lys-66 of AD. The six clustered basic amino acid residues (His-24, Lys-27, His-28, His-29, Arg-31, and His-33) present in the amino-terminal portion of AR and the eight clustered acidic amino acid residues (Glu-65, Glu-68, Asp-72, Glu-73, Glu-74, Asp-76, Asp-79, and Asp-86) present in the middle part of AD may play an important role in the complex formation.  相似文献   

11.
The NADPH-cytochrome c reductase activity of NADPH-adrenodoxin reductase from NADPH to cytochrome c via adrenodoxin was inhibited by pyridoxal 5'-phosphate and other reagents that modified the lysine residues. However, the NADPH-ferricyanide reductase activity was not affected. Loss of the cytochrome c reductase activity could be prevented by adrenodoxin, but not by NADP+. One lysine residue of the adrenodoxin reductase could be protected from the modification with pyridoxal 5'-phosphate by complex formation with adrenodoxin. Loss of the NADPH-cytochrome c reductase activity was not due to the conformational change of the modified adrenodoxin reductase, judging from circular dichroism spectrometric studies.  相似文献   

12.
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin -P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin-P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system.  相似文献   

13.
The water-soluble carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, homobifunctional reagent 3,3'-dithiobis (succinimidyl propionate), and heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio) propionate have been used to cross-link adrenodoxin reductase and adrenodoxin, components of steroidogenic electron transfer system. Though maximal yield of the cross-linked complex was achieved with the water-soluble carbodiimide, this complex was inactive in the electron transfer from NADPH to cytochrome P-450. The functionally active complex was formed with N-succinimidyl 3-(2-pyridyldithio) propionate. The complex was purified to the apparent homogeneity and shown to be able to mediate the electron transfer. The data obtained indicate existence of different binding sites on adrenodoxin responsible for the adrenodoxin reductase and cytochrome P-450scc binding and do not contradict to the model of the steroidogenic electron transfer in an organized complex.  相似文献   

14.
Site-directed mutagenesis was utilized to enable direct expression of the mature form of bovine adrenodoxin cDNA using the pKK223-3 expression vector in Escherichia coli. Expression was under control of the "tac" promoter and resulted in a direct expression of soluble mature bovine adrenodoxin (greater than 15 mg per liter). Chromatographic behavior of recombinant adrenodoxin did not differ from that reported for mature native adrenodoxin. The purified recombinant protein was identical to native mitochondrial adrenodoxin on the basis of molecular weight, NH2 terminal sequencing and immunoreactivity. E. coli lysates were brown in color, and the purified protein possessed a visible absorbance spectra identical to native bovine adrenodoxin consistent with incorporation of a [2Fe-2S] cluster in vivo. Recombinant bovine adrenodoxin was active in cholesterol side-chain cleavage when reconstituted with adrenodoxin reductase and cytochrome P450scc and exhibited kinetics reported for native bovine adrenodoxin. The presence of the adrenodoxin amino terminal presequence does not appear to be essential for correct folding of mature recombinant adrenodoxin in E. coli. This expression system should prove useful for overexpression of adrenodoxin mutants in future structure/function studies. The approach described herein can potentially be used to directly express the mature form of any protein in bacteria.  相似文献   

15.
Selective chemical modification of cytochrome P-450SCC has been carried out with lysine-modifying reagents. Modification of cytochrome P-450SCC with succinic anhydride was shown to result in loss of its ability to interact with intermediate electron transfer protein - adrenodoxin. To identify amino acid residues involved in charge-ion pairing with complementary carboxyl groups of adrenodoxin, cytochrome P-450SCC complex with adrenodoxin was modified with succinic anhydride. Adrenodoxin was then removed and cytochrome P-450 was additionally modified with isotopically labelled reagent. Subsequent chymotryptic hydrolysis of [14C]succinylated cytochrome P-450SCC and separation of digest obtained by combining various types of HPLC resulted in seven major radioactive peptides. The amino acid sequence of the peptides was determined by microsequencing. The major amino groups modified with radioactive succinic anhydride were found to be at Lys-73, -109, -110, -126, -145, -148 and -154 in the N-terminal sequence of cytochrome P-450SCC molecule and at Lys-267, -270, -338 and -342 in the C-terminal sequence. The role of electrostatic interactions in fixation of cytochrome P-450SCC complex with adrenodoxin is discussed.  相似文献   

16.
The diaphorase activity of NADPH: adrenodoxin reductase (EC 1.18.1.2) is stimulated by adrenodoxin. The latter prevents the reductase inhibition by NADPH; the Line-weaver-Burk plots are characterized by a biphasic dependence of the reaction rate on the oxidizer concentration. At pH 7.0 the maximal rate of the first phase is 20s-1; that for the second phase at saturating concentrations of adrenodoxin is 5 s-1. Since the second phase rate is equal to that of the adrenodoxin-linked cytochrome c reduction by reductase it is concluded that this phase reflects the reduction of the oxidizers via reduced adrenodoxin. Quinones are reduced by adrenodoxin in an one-electron way; the logarithms of their rate constants depend hyperbolically on their single-electron reduction potentials (E7(1]. The oxidizers interact with a negatively charged domain of adrenodoxin. The depth of the adrenodoxin active center calculated from the Fe(EDTA)- reduction data is 5.9 A.  相似文献   

17.
The ferredoxin from bovine renal mitochondria (renoredoxin) has been obtained in a highly purified state. The A415/A280 ratio of the purified renoredoxin is 0.84. The absorption spectrum of renoredoxin was shown to be identical to that of bovine adrenodoxin. Two forms of renoredoxin (Mr 14200 and 13300) were detected by using polyacrylamide gel electrophoresis. These forms exhibit a very similar immunologic cross-reactivity with polyclonal antibodies to adrenodoxin. The N-terminal amino acid sequence of renal ferredoxin was shown to be identical to that of adrenodoxin; the C-terminal sequences of both ferredoxins undergo a similar post-translational proteolytic modification. The amino acid composition of ferredoxins are also very close. Renal ferredoxin can be replaced by adrenodoxin in reconstituted systems from bovine adrenal cortex mitochondria which catalyze the side chain cleavage of cholesterol to pregnenolone and the 11 beta-hydroxylation of deoxycorticosterone to corticosterone.  相似文献   

18.
Chemical modification of tryptophanyl residues of NADPH - adrenodoxin reductase by N - bromosuccinimide and trichloroethanol prevents the interaction of the enzyme with adrenodoxin. The modification does not touch other amino acid residues besides tryptophan (tyrosine, lysine and cysteine) or disturb the structure of protein. The presence of adrenodoxin suppresses the modification. The data obtained indicate the participation of adrenodoxin reductase tryptophan residues in the interaction with adrenodoxin.  相似文献   

19.
This paper presents the first 1H-NMR spectra of the aromatic region of adrenodoxin, a mammalian mitochondrial 2Fe-2S non-heme iron ferredoxin. One-dimensional proton NMR spectra of both reduced and oxidized adrenodoxin were recorded as a function of pH. Resonances due to two of the three histidines of adrenodoxin gave sharp signals in the one-dimensional proton NMR spectra. The pKa values of the resolved histidine resonances in the oxidized protein were 6.64 +/- 0.03 and 6.12 +/- 0.06. These values were unchanged when adrenodoxin was reduced by the addition of sodium dithionite. In addition, the oxidized protein showed a broadened histidine C-2H resonance with a pKa value of approx. 7. This resonance was not apparent in the spectra of the reduced protein. The resonances due to the single tyrosine in adrenodoxin were identified using convolution difference spectroscopy. In addition, a two-dimensional Fourier-transform double quantum filtered (proton, proton) chemical shift correlated (DQF-COSY) spectrum of oxidized adrenodoxin was obtained. The cross peaks of the resonances due to the tyrosine, the four phenylalanines, and two of the three histidines of adrenodoxin were resolved in the DQF-COSY spectrum. Reduction of the protein caused several changes in the aromatic region of the NMR spectra. The resonances assigned to the C2 proton of the histidine with a pKa of 6.6 shifted upfield approx. 0.15 ppm. In addition, when the protein was reduced one of the resonances assigned to a phenylalanine residue with a chemical shift of 7.50 ppm appeared to move downfield to 7.82 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号