首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a recent publication Tom Douglas and Katrien Devolder have proposed a new account of genetic parenthood, building on the work of Heidi Mertes. Douglas and Devolder’s account aims to solve, among other things, the question of who are the genetic parents of an individual created through somatic cell nuclear transfer (i.e. cloning): (a) the nuclear DNA provider or (b) the progenitors of the nuclear DNA provider. Such a question cannot be answered by simply appealing to the folk account of genetic parenthood, according to which the genetic parents of an individual are those individuals who produced the egg and sperm, respectively, which fused to create the embryo. It cannot be so as in cloning there is no fertilization as such. In this article I critically examine Douglas and Devolder’s new account of genetic parenthood and demonstrate that it is vulnerable to counterexamples that exploit the lack of a condition specifying that genetic parents should cause a child’s coming into existence.  相似文献   

2.
In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.  相似文献   

3.
Several breakthroughs in nuclear transfer research were first achieved in sheep, although cattle soon became the main livestock species of interest. However, sheep still offer significant advantages both in basic and applied research. With increased interest in cloning of livestock, new approaches have been developed for both sheep and cattle nuclear transfer technology. These include methods for zona-free nuclear transfer that can be performed with or without the use of micromanipulator. Here we describe four different nuclear transfer methods including the traditional micromanipulation-assisted method in sheep, zona-free method in sheep in which the order of enucleation and nucleus delivery have been reversed ("reverse-order" cloning) and zona free manual cloning methods ("hand-made cloning") for embryonic and somatic cloning in cattle. The purpose of this paper is to encourage people to familiarize themselves with these different methods available and to help them choose and test the method most suitable for their particular circumstances.  相似文献   

4.
The stem cell data presented and discussed during the symposium raise the hope that important medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration, and the treatment of cancers that may harm normal tissues at risk of being infiltrated by malignant cells. Three main types of stem cells are available. (i) Those present in normal adult tissue: contrary to what was believed, some data suggest that certain adult stem cells have a great plasticity (they can differentiate into cells different from those in tissues from which they were taken) and can proliferate in vitro without losing their properties. Nevertheless, their use faces several obstacles: in ill or elderly subjects, then these cells can be limited in number or not multiply well in vitro. In this case, auto-grafting of the cells cannot be used. They must be sought in another subject, and allo-grafting causes difficult and sometimes insoluble problems of immunological tolerance. (ii) Embryonic stem cells from surplus human embryos, obtained by in vitro fertilisation, which the parents decide not to use: these cells have a great potential for proliferation and differentiation, but can also encounter problems of immunological intolerance. (iii) Cells obtained from cell nuclear transfer in oocytes: these cells are well tolerated, since they are genetically and immunologically identical to those of the host. All types of stem cells can be obtained with them. However, they do present problems. For obtaining them, female oocytes are needed, which could lead to their commercialization. Moreover, the first steps for obtaining these cells are identical to those used in reproductive cloning. It therefore appears that each type of cell raises difficult scientific and practical problems. More research is needed to overcome these obstacles and to determine which type of stem cell constitutes the best solution for each type of disease and each patient. There are three main ethical problems: (a) to avoid the commercialization of stem cells and oocytes (this can be managed through strict regulations and the supervision of authorized laboratories); (b) to avoid that human embryos be considered as a mere means to an end (they should only be used after obtaining the informed consent of the parents; the conditions of their use must be well defined and research programs must be authorized); (c) to avoid that research on stem cell therapy using cell nuclear replacement opens the way to reproductive cloning (not only should reproductive cloning be firmly forbidden but authorization for cell nuclear transfer should be limited to a small number of laboratories). Overall, it appears that solutions can be found for administrative and ethical problems. Harmonisation of international regulations would be desirable in this respect, in allowing at the same time each country to be responsible for its regulations. A last ethical rule should be implemented, not to give patients and their families false hopes. The scientific and medical problems are many, and the solutions will be long and difficult to find. Regenerative medicine opens important avenues for research, but medical progress will be slow.  相似文献   

5.
Endometrial carcinoma is listed among the absolute contra-indications to hormone therapy. After all the existing opinions so far, hormone therapy after FIGO stage I or II endometrial cancer is still thought of as a possibility, and up to now the continuous combined oestrogen/progestogen replacement therapy would be recommended. However, until today, only observational studies have been put forward. Although no study has established an increased rate of recurrences or mortality, alternatives such as phytopreparations, tibolone, or, in, particular, psychotherapeutic drugs such as venlafaxine should be considered for the relief of climacteric complaints. Progestogen-only therapy also comes particularly into question. Indeed, the wider discussion about the gestagen effects regarding the risks of breast cancer is to be considered. Generally, after hysterectomy, at least for patients with cardiovascular risk factors, the preference today is to use low-dose oestrogen therapy (patches, gels) instead of continuous combined oestrogen/progestogen replacement therapy, and this also is now recommended for patients after endometrial cancer. This is to be noted because of the risk factors for endometrial carcinomas, such as hypertension, obesity, polycystic ovary syndrome, diabetes mellitus, etc. However, each form of hormone therapy should only be exceptionally recommended, and the patients must be informed about the risks that exist and the use of alternatives.  相似文献   

6.
Impaired development of embryos produced by somatic cell nuclear transfer (SCNT) is mostly associated with faulty reprogramming of the somatic nucleus to a totipotent state and can be improved by treatment with epigenetic modifiers. Here we report that addition of 100 μM vitamin C (VitC) to embryo culture medium for at least 16 h post-activation significantly increases mouse blastocyst formation and, when combined with the use of latrunculin A (LatA) during micromanipulation and activation procedures, also development to term. In spite of this, no significant effects on pluripotency (OCT4 and NANOG) or nuclear reprogramming markers (H3K14 acetylation, H3K9 methylation and DNA methylation and hydroxymethylation) could be detected. The use of LatA alone significantly improved in vitro development, but not full-term development. On the other hand, the simultaneous treatment of cloned embryos with VitC and the histone deacetylase inhibitor psammaplin A (PsA), in combination with the use of LatA, resulted in cloning efficiencies equivalent to those of VitC or PsA treatments alone, and the effects on pluripotency and nuclear reprogramming markers were less evident than when only the PsA treatment was applied. These results suggest that although both epigenetic modifiers improve cloning efficiencies, possibly through different mechanisms, they do not show an additive effect when combined. Improvement of SCNT efficiency is essential for its applications in reproductive and therapeutic cloning, and identification of molecules which increase this efficiency should facilitate studies on the mechanism of nuclear reprogramming and acquisition of totipotency.  相似文献   

7.
Production of cloned pigs from in vitro systems   总被引:42,自引:0,他引:42  
Here we describe a procedure for cloning pigs by the use of in vitro culture systems. Four healthy male piglets from two litters were born following nuclear transfer of cultured somatic cells and subsequent embryo transfer. The initiation of five additional pregnancies demonstrates the reproducibility of this procedure. Its important features include extended in vitro culture of fetal cells preceding nuclear transfer, as well as in vitro maturation and activation of oocytes and in vitro embryo culture. The cell culture and nuclear transfer techniques described here should allow the use of genetic modification procedures to produce tissues and organs from cloned pigs with reduced immunogenicity for use in xenotransplantation.  相似文献   

8.
Despite its long history, the cloning of animals by nuclear transplantation is going through a "renaissance" after the birth of Dolly. The amount of work and achievements obtained in the last seven years are probably greater than those obtained in half a century of research. However, the principal obstacles outlined years ago with the work on somatic cell cloning in amphybia, are all still there in mammals. The importance of somatic cell nuclear transfer is, without any doubt, beyond the scope of replicating superior animal genotypes. It is an invaluable experimental tool to address fundamental scientific issues such as nuclear potency, cell de-differentiation, chromatin structure and function, epigenetics, and genome manipulation. For these reasons the importance of cloning is not for what it can achieve but for the technical support it can provide to biomedical research and in particular to the study of epigenetics, cancer and stem cell biology, cell therapy and regenerative medicine. In this introductory paper we will summarize the intellectual and technical framework of cloning animals by nuclear transfer that still remains the only absolute way of judging the success of the procedure. Together with the achievements of the recent past we will mention the very last developments and the many questions that still remain open. Current research efforts are expected to provide some answers and certainly new questions.  相似文献   

9.
Gene-targeted livestock can be created by combining ex vivo manipulation of cultured nuclear donor cells with cloning by nuclear transfer. However, this process can be limited by the low gene targeting frequencies obtained by transfection methods, and the limited ex vivo life span of the normal nuclear donor cells. We have developed an alternative gene targeting method based on the delivery of linear, single-stranded DNA molecules by adeno-associated virus (AAV) vectors, which can be used to introduce a variety of different mutations at single copy loci in normal human cells. Here we show that AAV vectors can efficiently target the PRNP gene encoding the prion protein PrP in bovine fetal fibroblasts, which can be used as nuclear donors to clone cattle. Cattle with both PRNP genes disrupted should be resistant to bovine spongiform encephalopathy.  相似文献   

10.
Prospects for the use of nuclear transfer in human transplantation   总被引:11,自引:0,他引:11  
The successful application of nuclear transfer techniques to a range of mammalian species has brought the possibility of human therapeutic cloning significantly closer. The objective of therapeutic cloning is to produce pluripotent stem cells that carry the nuclear genome of the patient and then induce them to differentiate into replacement cells, such as cardiomyocytes to replace damaged heart tissue or insulin-producing beta cells for patients with diabetes. Although cloning would eliminate the critical problem of immune incompatibility, there is also the task of reconstituting the cells into more complex tissues and organs in vitro. In the review, we discuss recent progress that has been made in this field as well as the inherent dangers and scientific challenges that remain before these techniques can be used to harness genetically matched cells and tissues for human transplantation.  相似文献   

11.
The term ‘cloning’ refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.  相似文献   

12.
Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF) is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT) cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.  相似文献   

13.
Riaz A  Zhao X  Dai X  Li W  Liu L  Wan H  Yu Y  Wang L  Zhou Q 《Cell research》2011,21(5):770-778
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.  相似文献   

14.
The outcome of the process of cloning by nuclear transfer depends on multiple factors that affect its efficiency. Donor cells should be carefully selected for their use in somatic nuclear transfer, and the protocols used for keeping frozen cell banks are of cardinal importance. Here we studied the effect of two protocols for freezing donor cells on fusion rate and development into blastocysts. Our hypothesis is that freezing affects cell membranes in a way that interferes with the fusion process upon cloning but without hampering normal cell development in vitro. We found that freezing cell lines without controlling the cooling rate gives lower yields in the fusion step and in the final development into blastocysts, compared with cells frozen with a controlled cooling rate of approximately 1 degrees C/min. Transmission electron microscopy of the cells subjected to different freezing procedures showed major damage to the cells frozen with a non-controlled protocol. We conclude that freezing of donor cells for cloning is a critical step in the procedure and should be monitored carefully using a method that allows for a step-wise, controlled cooling rate.  相似文献   

15.
In order to optimize each of the individual steps in the nuclear transfer procedure, we report alternative protocols useful for producing recipient cytoplasts and for improving the success rate of nuclear transfer embryos in cattle, rhesus monkey, and hamster. Vital labeling of maternal chromatin/spindle is accomplished by long wavelength fluorochromes Sybr14 and rhodamine labeled tubulin allowing constant monitoring and verification during enucleation. The use of Chinese hamster ovary (CHO) donor cells expressing the viral influenza hemagglutinin fusion protein (HA-300a+), to adhere and induce fusion between the donor cells and enucleated cow, rhesus and hamster oocytes was examined. Cell surface hemagglutinin was activated with trypsin prior to nuclear transfer and fusion was induced by a short incubation of a newly created nuclear transfer couplet at pH 5.2 at room temperature. Donor cell cytoplasm was dynamically labeled with CMFDA, or further transfected with the green fluorescence protein (GFP) gene, so that fusion could be directly monitored using live imaging. High rates of fusion were observed between CHO donor cells and hamster (100%), rhesus (100%), and cow recipient cytoplasts (81.6%). Live imaging during fusion revealed rapid intermixing of cytoplasmic components between a recipient and a donor cell. Prelabeled donor cytoplasmic components were uniformly distributed throughout the recipient cytoplast, within minutes of fusion, while the newly introduced nucleus remained at the periphery. The fusion process did not induce activation as evidenced by unchanged distribution and density of cortical granules in the recipient cytoplasts. After artificial activation, the nuclear transfer embryos created in this manner were capable of completing several embryonic cell divisions. These procedures hold promise for enhancing the efficiency of nuclear transfer in mammals of importance for biomedical research, agriculture, biotechnology, and preserving unique, rare, and endangered species.  相似文献   

16.
Laberge CM  Knoppers BM 《Bioethics》1992,6(4):317-330
Conclusion: Genetic knowledge is now in the public domain and its interpretation by the media and the citizens brings the issues into the public forum of discussion for the necessary ethical, legal and socio-cultural evaluation of its application. Science is being perceived by some as dangerous and as requiring international regulation. Others feel that genetic knowledge will be the breakthrough that will permit medical progress and individual autonomy with regards to personal health and lifestyle choices. The mapping of the human genome has already yielded valuable information on an increasing number of diseases and their variants. Prevailing popular and journalistic archetypes ("imaginaires") used in the media are perceived by the producers as slowing down the possible application of genetic knowledge. The answers to these dilemmas are not readily apparent nor are they prescribed by classical philosophy of medicine. Since genetic knowledge eventually resides with the individual who carries the genes of disease and/or susceptibility, a logical approach to integration of this knowledge at a societal level would seem to reside with individual education and decision-making. The politics of the ensuing social debate could transform the current social contract since an individual's interests need to be balanced against those of his or her immediate family in the sharing of information. The ethical foundations of such a contract requires the genetic education of "Everyone" as a matter of urgent priority. Genetic education should not serve ideological power struggles between the medical establishment and the ethical-legal alliance. Instead, it should ensure the transfer of knowledge to physicians, to patients, to users, to planners, to social science and humanities researchers and to politicians, so that they may make "informed" and free decisions....  相似文献   

17.
核移植与治疗性克隆   总被引:2,自引:1,他引:1  
徐小明  雷安民  华进联  窦忠英 《遗传》2005,27(2):289-296
核移植与治疗性克隆在畜牧业生产以及生物医学上具有广阔和诱人的应用前景。文章分析指出卵母细胞质量与供核细胞重新编程是影响体细胞核移植效率及克隆动物异常的主要因素,阐述了治疗性克隆所面临的一些基本问题及出路:治疗性克隆以核移植技术为基础,核移植所面临的一些问题也直接影响着治疗性克隆的临床应用;核移植胚胎干细胞分离培养效率的高低以及向重要功能细胞定向分化是治疗性克隆的前提;成体干细胞可用于一些重大疾病的治疗,但不能完全替代克隆性治疗;伦理问题也阻碍治疗性克隆的发展。核移植及治疗性克隆技术要想尽快更好地应用于临床和造福于人类,需要不断完善各技术环节和加强一些基础理论的研究。Abstract: Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.  相似文献   

18.
Birth of mice after nuclear transfer by electrofusion using tail tip cells   总被引:36,自引:0,他引:36  
Mice have been successfully cloned from cumulus cells, fibroblast cells, embryonic stem cells, and immature Sertoli cells only after direct injection of their nuclei into enucleated oocytes. This technical feature of mouse nuclear transfer differentiates it from that used in domestic species, where electrofusion is routinely used for nuclear transfer. To examine whether nuclear transfer by electrofusion can be applied to somatic cell cloning in the mouse, we electrofused tail tip fibroblast cells with enucleated oocytes, and then assessed the subsequent in vitro and in vivo development of the reconstructed embryos. The rate of successful nuclear transfer (fusion and nuclear formation) was 68.8% (753/1094) and the rate of development into morulae/blastocysts was 40.8% (260/637). After embryo transfer, seven (six males and one female; 2.5% per transfer) normal fetuses were obtained at 17.5-21.5 dpc. These rates of development in vitro and in vivo are not significantly different from those after cloning by injection (44.7% to morulae/blastocysts and 4.8% to term). These results indicate that nuclear transfer by electrofusion is practical for mouse somatic cell cloning and provide an alternative method when injection of donor nuclei into recipient oocytes is technically difficult.  相似文献   

19.
于洋  王柳  周琪 《生命科学》2009,(5):647-651
体细胞核移植技术已经在基础研究领域与产业化应用领域体现出了重要的价值,因而体细胞核移植技术及其相关研究已经成为了生物领域的持续性研究热点,但是围绕体细胞核移植技术仍然存在许多质疑,其中最主要的就是体细胞核移植的效率较低。尽管如此,体细胞核移植研究仍然在近年来取得了令人瞩目的成就,包括小鼠与恒河猴核移植胚胎干细胞系的建立。该文就体细胞核移植的研究历史与进展进行简要的论述,同时针对体细胞核移植研究中的细胞重编程与治疗性克隆研究中的发展与问题进行剖析,希望能够积极推动治疗性克隆的研究进展,加速核移植与干细胞技术在产业化领域中的应用。  相似文献   

20.
Nuclear proteins are involved in many critical biological processes within plant cells and, therefore, are in the focus of studies that usually begin with demonstrating that the protein of interest indeed exhibits nuclear localization. Thus, studies of plant nuclear proteins would be facilitated by a convenient experimental system for identification of proteins that are actively imported into the cell nucleus and visualization of their nuclear accumulation in vivo. To this end, we developed a system of vectors that allows screening for cDNAs coding for nuclear proteins in a simple genetic assay in yeast cells, and verification of nuclear accumulation in planta following one-step transfer and autofluorescent tagging of the identified clones into a multiple cloning site-compatible and reading frame-compatible plant expression vector. In a recommended third experimental step, the plant expression cassette containing the identified clone can be transferred, also by a one-step cloning, into a binary multigene expression vector for transient or stable coexpression with any other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号