首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.  相似文献   

2.
In a previous paper [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227] we presented a kinetic model for the activity of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Here we extend the model to account for the effects on ATPase activity of Mg2+, cations and anions. We find that Mg2+ concentrations in the millimolar range inhibit ATPase activity, which we attribute to competition between Mg2+ and MgATP for binding to the nucleotide-binding site on the E1 and E2 conformations of the ATPase and on the phosphorylated forms of the ATPase. Competition is also suggested between Mg2+ and MgADP for binding to the phosphorylated form of the ATPase. ATPase activity is increased by low concentrations of K+, Na+ and NH4+, but inhibited by higher concentrations. It is proposed that these effects follow from an increase in the rate of dephosphorylation but a decrease in the rate of the conformational transition E1'PCa2-E2'PCa2 with increasing cation concentration. Li+ and choline+ decrease ATPase activity. Anions also decrease ATPase activity, the effects of I- and SCN- being more marked than that of Cl-. These effects are attributed to binding at the nucleotide-binding site, with a decrease in binding affinity and an increase in 'off' rate constant for the nucleotide.  相似文献   

3.
Magnesium transport across sarcoplasmic reticulum (SR) vesicles was investigated in reaction mixtures of various composition using antipyrylazo III or arsenazo I to monitor extravesicular free Mg2+. The half-time of passive Mg2+ efflux from Mg2+-loaded SR was 100 s in 100 mM KCl, 150 S in 100 mM K gluconate, and 370 S in either 100 mM Tris methanesulfonate or 200 mM sucrose solutions. The concentration and time course of Mg2+ released into the medium was also measured during ATP-dependent Ca2+ uptake by SR. In reaction mixtures containing up to 3 mM Mg2+, small changes in free magnesium of 10 microM or less were accurately detected without interference from changes in free Ca2+ of up to 100 microM. Three experimental protocols were used to determine whether the increase of free [Mg2+] in the medium after an addition of ATP was due to Mg2+ dissociated from ATP following ATP hydrolysis or to Mg2+ translocation from inside to outside of the vesicles. 1) In the presence of ATP-regenerating systems which maintained constant ATP to ADP ratios and normal rates of active Ca2+ uptake, the increase of Mg2+ in the medium was negligible. 2) Mg2+ released during ATP-dependent Ca2+ uptake by SR was similar to that observed during ATP hydrolysis catalyzed by apyrase, in the absence of SR. 3) In SR lysed with Triton X-100 such that Ca2+ transport was uncoupled from ATPase activity, the rate and amount of Mg2+ release was greater than that observed during ATP-dependent Ca2+ uptake by intact vesicles. Taken together, the results indicate that passive fluxes of Mg2+ across SR membranes are 10 times faster than those of Ca2+ and that Mg2+ is not counter-transported during active Ca2+ accumulation by SR even in reaction mixtures containing minimal concentrations of membrane permeable ions that could be rapidly exchanged or cotransported with Ca2+ (e.g. K+ or Cl-).  相似文献   

4.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

5.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

6.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

7.
Previously, we showed that incubation of the scallop sarcoplasmic reticulum (SR) with EGTA at above 37 degrees C resulted in the uncoupling of ATP hydrolysis with Ca2+ transport [Nagata et al. (1996) J. Biochem. 119, 1100-1105]. We have extended this study by comparing the kinetic behavior of Ca2+ release and binding to the uncoupled SR with that of intact scallop or rabbit SR. The change in the Ca2+ concentration in the reaction medium, as determined as the absorption of APIII, was followed using a stopped flow system. Intact scallop SR was preincubated with Ca2+ in the presence of a Ca2+ ionophore, A23187, and then ATP was added to initiate the reaction. The Ca2+ level in the medium increased to the maximum level in several seconds, and then slowly decreased to the initial low level. The rising and subsequent slow decay phases could be related to the dissociation and reassociation of Ca2+ with the Ca-ATPase, respectively. When uncoupled scallop SR vesicles were preincubated with CaCl2 in the absence of A23187 and then the reaction was initiated by the addition of ATP, a remarkable amount of Ca2+ was released from the SR vesicles into the cytosolic solution, whereas, with intact scallop or rabbit SR, only a sharp decrease in the Ca2+ level was observed. Based on these findings, we concluded that the heat treatment of scallop SR in EGTA may alter the conformation of the Ca-ATPase, thereby causing Ca2+ to be released from the enzyme, during the catalytic cycle, at the cytoplasmic surface, but not at the lumenal surface of SR vesicles.  相似文献   

8.
Isolated sarcoplasmic reticulum vesicles exhibited different functional characteristics in the presence of zwitterionic as compared to anionic buffers. In the absence of oxalate, dicarboxylic anions (e.g. maleate, succinate) in a dose-dependent manner enhanced ATP-supported Ca2+ accumulation, the ensuing spontaneous Ca2+ release, and Ca2+-dependent ATPase activity compared to zwitterionic buffers (e.g. piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (Hepes). This was not attributed to ionic strength and osmotic effects. The additional anion-dependent Ca2+ accumulation was linked to augmented Ca2+-dependent ATPase activity, and both could be induced by the addition of anion at any time during Ca2+ accumulation as long as ATP was present. Since the initial Ca2+ accumulation rates and acyl phosphoenzyme formation were the same between the two buffer classes, and the presence of either oxalate (a Ca2+-precipitating anion) or A23187 (a Ca2+ ionophore) abolished differences in Ca2+-dependent ATPase activity between the two buffer classes, it is likely that conditions favoring high intravesicular Ca2+ concentration allow the expression of the observed effect of the anions. Initial spontaneous Ca2+ release in the presence of maleate was not caused by ATP depletion, and it was virtually absent in Pipes buffer. The rate of spontaneous release was also stimulated in a dose-dependent manner by the dicarboxylic anions, with the time of release being related to the time of anion addition and not ATP addition. A later, more rapid release phase in either maleate or Pipes buffer corresponded to ATP depletion, and could be duplicated at any time in the Ca2+ accumulation/release cycle by the addition of an ATP trap. With an ATP-regenerating system present or with very high ATP concentrations, the maximal peak Ca2+ accumulation in Pipes buffer could approach that in maleate buffer. The data suggest that dicarboxylic anions stimulate the filling of a Ca2+ compartment from which spontaneous Ca2+ release occurs.  相似文献   

9.
The goal of this investigation was to develop an assay whereby we could measure changes in ATP, ADP, and phosphocreatine (PCr) during stimulation of the sarcoplasmic reticulum (SR) Ca2+ ATPase. After stopping the enzyme reaction, compounds were extracted by perchloric acid and separated by reversed-phase high-performance liquid chromatography (HPLC). Absorbance of ATP and ADP was monitored at 260 nm, and detection of PCr was done at 205 nm. Chromatograms show that peaks associated with each compound are clearly separated and easily detected. The SR Ca2+ ATPase assay was run for various time periods and using varying free [Ca2+]. The changes in ATP and ADP contents were linear with increasing time and varied as expected with increasing free [Ca2+]. The ATPase activities determined using changes in ATP and ADP were nearly identical to those determined using previously established assays. When PCr was added to the assay, we were able to confirm that the Ca2+ ATPase uses ATP that is synthesized locally from PCr via creatine kinase (CK). The results indicate that this is a valid and reliable method for examining SR Ca2+ ATPase activity and for investigating its interaction with CK.  相似文献   

10.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

11.
1. The translocation of 45Ca2+ in vesicles reconstituted with purified Ca2+ ATPase of sarcoplasmic reticulum and phospholipids was dependent on ATP and varied greatly with the composition of the phospholipids. 2. In contrast to sarcoplasmic reticulum fragments, the reconstituted vesicles were impermeable to 14C-labeled oxalate, 3H- or 32P-labeled ATP, or 32P-i. There was no translocation of phosphate from gamma-labeled ATP during Ca2+ uptake. These results are inconsistent with some current formulations of the mechanism of pump action. 3. Reversal of the Ca2+ pump and generation of ATP and ADP and P-i was observed when vesicles loaded with Ca2+ were exposed to ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. 4. Experiments on the formation of phosphoenzyme with 32P-labeled ATP showed that most if not all functional ATPase molecules in the reconstituted vesicles were oriented in the same direction, as in the case of sarcoplasmic reticulum fragments.  相似文献   

12.
The H+-translocating ATP synthase of Halobacterium halobium (Y. Mukohata and M. Yoshida (1987) J. Biochem. 102, 797-802) includes a catalytic moiety of 320 kDa which is isolated as an azide-insensitive ATPase (T. Nanba and Y. Mukohata (1987) J. Biochem. 102, 591-598). The polyclonal antibody against this archaebacterial ATPase cross-reacts with the anion-sensitive H+-ATPase of red beet, Beta vulgaris, tonoplast as well as with another archaebacterial ATPase from Sulfolobus acidocaldarius. The affinity is much higher than to F1-ATPase from spinach chloroplasts or to Ca2+-ATPase from sarcoplasmic reticulum of rabbit skeletal muscle.  相似文献   

13.
Highly purified fractions of sarcoplasmic reticulum (SR) were prepared from chicken pectoralis muscles (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885) and analyzed for the presence of creatine kinase (CK). Vesicles derived from longitudinal SR contained 0.703 +/- 0.428 IU of CK/mg of (SR) protein. Immunogold localization of muscle-type MM-CK on ultrathin cryosections of muscle, after removal of soluble CK, revealed relatively strong in situ labeling of M-CK remaining bound to the M band as well as to the SR membranes. In addition, purified SR vesicles were also labeled by anti-M-CK antibodies, and the peripheral labeling was similar to that observed with anti-Ca2(+)-ATPase antibodies. Only some particulate CK enzyme was released from isolated SR membranes by EDTA/low salt buffer, and CK was resistant to extraction by 0.6 M KCl. Thus, some of the MM-CK present in muscle displays strong associative behavior to the SR membranes. The SR-bound CK was sufficient to support, in the presence of phosphocreatine plus ADP, a significant portion of the maximal in vitro Ca2+ uptake rate. The ATP regeneration potential of SR-bound CK was similar to the rate of Ca2(+)-stimulated ATP hydrolysis of isolated SR vesicles. Thus, CK bound to SR may be physiologically relevant in vivo for regeneration of ATP used by the Ca2(+)-ATPase, as well as for regulation of local ATP/ADP ratios in the proximity of the Ca2+ pump and of other ATP-requiring reactions in the excitation-contraction coupling pathway.  相似文献   

14.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

15.
We have reexamined the "uncoupling" of Ca2+ transport from ATP hydrolysis, which has been reported to be caused by trypsin cleavage of the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles at the second (slower) of two characteristic tryptic sites (Scott, T. L., and Shamoo, A. E. (1982) J. Membr. Biol. 64, 137-144). We find that the loss of Ca2+ accumulation capacity in SR vesicles is poorly correlated with this cleavage under several conditions. The loss is accompanied by increased Ca2+ permeability but not by changes in the properties of the ATPase or ATP-Pi exchange activities of the vesicles. Proteoliposomes containing purified Ca2+-ATPase which has been cleaved in part at the two tryptic sites are as well coupled and impermeable to Ca2+ as proteoliposomes containing intact Ca2+-ATPase. We conclude that the loss of Ca2+ accumulation capacity in SR vesicles on tryptic treatment is due to cleavage of a SR membrane component other than the Ca2+-ATPase, possibly a component of the gated channels which function in Ca2+ release from SR, which leads to a Ca2+ leak. The hydrolytic and coupled transport functions of the Ca2+-ATPase itself may well be unaffected by the two tryptic cleavages.  相似文献   

16.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

17.
The effects of an inhibitor of ADP/ATP translocase (AAT) mainly expressed in the mitochondria inner membrane, atractyloside (ATR), on the gating property of the Ca2+ channels in the sarcoplasmic reticulum (SR) vesicles from the rabbit skeletal muscle were investigated using ion flux measurement and single channel recording. At 10 microM of cytoplasmic Ca2+, ATR decreased the rate constant of choline+ influx through the Ca2+ channels up to about 60% and perfectly inhibited about half the population of single Ca2+ channels incorporated into planar bilayers. Furthermore, the inhibition of the Ca2+ channels by ATR was effective at lower Ca2+. These results support the previous results that AAT exists in the skeletal muscle SR and plays a key role in the Ca2+ mobilization of the skeletal muscle cell [Yamaguchi, N., and Kasai, M. (1998) Biochem. J. 335, 541-547], and the number of Ca2+ channels regulated by AAT is thought to depend on the cytoplasmic Ca2+ concentration.  相似文献   

18.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle accumulate Ca2+ at the expense of ATP hydrolysis. The heat released during the hydrolysis of each ATP molecule varies depending on whether or not a Ca2+ gradient is formed across the vesicle membrane. After Ca2+ accumulation, a part of the Ca2+-ATPase activity is not coupled with Ca2+ transport (Yu, X., and Inesi, G. (1995) J. Biol. Chem. 270, 4361-4367). I now show that both the heat produced during substrate hydrolysis and the uncoupled ATPase activity vary depending on the ADP/ATP ratio in the medium. With a low ratio, the Ca2+ transport is exothermic, and the formation of the gradient increases the amount of heat produced during the hydrolysis of each ATP molecule cleaved. With a high ADP/ATP ratio, the Ca2+ transport is endothermic, and formation of a gradient increased the amount of heat absorbed from the medium. Heat is absorbed from the medium when the Ca2+ efflux is coupled with the synthesis of ATP (5.7 kcal/mol of ATP). When there is no ATP synthesis, the Ca2+ efflux is exothermic (14-16 kcal/Ca2+ mol). It is concluded that in the presence of a low ADP concentration the uncoupled ATPase activity is the dominant route of heat production. With a high ADP/ATP ratio, the uncoupled ATPase activity is abolished, and the Ca2+ transport is endothermic. The possible correlation of these findings with thermogenesis and anoxia is discussed.  相似文献   

19.
Myotoxin a is a muscle-damaging toxin isolated from the venom of Crotalus viridis viridis. Its interaction with the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles purified from rabbit skeletal muscle was investigated. Myotoxin a inhibited Ca2+ loading and stimulated Ca2+-dependent ATPase without affecting unidirectional Ca2+ efflux. Its action was dose, time, and temperature dependent. Myotoxin a partially blocked the binding of specific anti-(rabbit SR Ca2+-ATPase) antibodies. It is concluded that myotoxin a attaches to the SR Ca2+-ATPase and uncouples Ca2+ uptake from Ca2+-dependent ATP hydrolysis. Myotoxin a also prevented the formation of decavanadate-induced two-dimensional crystalline arrays of the SR Ca2+-ATPase.  相似文献   

20.
Cell envelope vesicles of Halobacterium halobium synthesize ATP by utilizing base-acid transition (an outside acidic pH jump) under optimal conditions (1 M NaCl, 80 mM MgCl2, pH 6.8) even in the presence of azide (a specific inhibitor of F0F1-ATPase) (Mukohata & Yoshida (1987) J. Biochem. 101, 311-318). An azide-insensitive ATPase was isolated from the inner face of the vesicle membrane, and shown to hydrolyze ATP under very specific conditions (1.5 M Na2SO4, 10 mM MnCl2, pH 5.8) (Nanba & Mukohata (1987) J. Biochem. 102, 591-598). This ATPase activity could also be detected when the vesicle components were solubilized by detergent. The relationship between ATP synthesis and the membrane-bound ATPase was investigated by modification of the vesicles with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) or N-ethylmaleimide (NEM). The inhibition pattern of ATP synthesis in the modified vesicles and that of ATP hydrolysis of the solubilized modified vesicles were compared under the individual optimum conditions. The inhibition patterns were almost identical, suggesting that the ATP synthesis and hydrolysis are catalyzed by a single enzyme complex. The ATP synthase includes the above ATPase (300-320 kDa), which is composed of two pairs of 86 and 64 kDa subunits. This is a novel H+-translocating ATP synthase functioning in the extremely halophilic archaebacterium. This "archae-ATP-synthase" differs from F0F1-ATPase/synthase, which had been thought to be ubiquitous among all respiring organisms on our biosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号