首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Previous studies have shown that neurotensin (NT) administered intracerebroventricularly (i.c.v.) to rats provokes an inhibition of intestinal propulsion linearly related to the log of administered doses. In the present study it is demonstrated that, in contrast to morphine, repeated i.c.v. administrations of NT (2.5 nmol/rat/day) did not result in tolerance to the intestinal effect. Naloxone (Nx) administered i.c.v. fully antagonized the intestinal inhibition of i.c.v. morphine, but did not significantly alter the NT effect. However, centrally administered thyrotropin-releasing hormone (TRH) inhibited NT-induced (but not morphine-induced) intestinal inhibition. Direct microinjections of NT into the periaqueductal gray matter (PAG) produced complete inhibition of intestinal propulsion when the microinjections were localized in the dorsal portion. Finally, subdiaphragmatic vagotomy totally abolished the inhibition induced by NT into the PAG, while morphine was not affected. Some considerations are put forward concerning the existence in the central nervous system of a peptidergic pathway modulating intestinal function.  相似文献   

2.
《Life sciences》1995,56(14):PL243-PL248
Central administration of the selective mu opioid agonist, dermorphin, produces a concurrent diuretic and antinatriuretic response in conscious rats. To determine whether central mu opioids differentially affect the renal excretion of water and sodium, we examined changes in renal function produced by intracerebroventricular (i.c.v.) administration of dermorphin during continuous intravenous (i.v.) infusion of a synthetic ADH analogue in conscious Sprague-Dawley rats. During ADH infusion the typical diuresis produced by i.c.v. dermorphin was abolished although the antinatriuresis remained intact. Alone, I.v. ADH produced a decrease in urine flow rate without significantly altering urinary sodium excretion. In other studies, the effects of i.c.v. dermorphin were examined on the renal responses produced by i.v. infusion of a V2-ADH receptor antagonist. In these studies the magnitude of the V2 antagonist-induced diuresis was not altered by i.c.v. dermorphin but the increase in urinary sodium excretion produced by this antagonist was converted to an antinatriuresis. Central dermorphin did not alter heart rate or mean arterial pressure in either study. These findings suggest that the effects of central dermorphin on renal sodium and water handling are mediated by separate mechanisms; the effects on water involving changes in circulating ADH levels and the effects on sodium independent of the action of this hormone.  相似文献   

3.
Guanylin and related peptides.   总被引:4,自引:0,他引:4  
Guanylin and uroguanylin are short peptides homologous to heat-stable enterotoxins of Escherichia coli and other enteric bacteria. Guanylin and uroguanylin are synthetized from the respective prepropeptides mainly in gastrointestinal mucosa and are secreted both into intestinal lumen and into the blood. Luminally secreted peptides stimulate chloride and bicarbonate secretion in the intestine through the mechanism involving guanylate cyclase C receptor, cyclic GMP, protein kinase G and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Bacterial enterotoxins, which have greater potency than endogenous peptides, induce excessive fluid secretion into intestinal lumen leading to secretory diarhea. Uroguanylin is expressed mainly in enterochromaffin cells of duodenum and proximal small intestine whereas guanylin is abundant in goblet cells of colonic epithelium. Uroguanylin and guanylin increase urinary sodium and potassium excretion both as circulating hormones and as paracrine mediators produced within the kidney. Uroguanylin functions as "intestinal natriuretic hormone" which is secreted in response to oral sodium loading and maintains sodium balance during postprandial period. Plasma and urinary concentrations of guanylin and uroguanylin increase in renal failure and heart failure. Guanylin peptides possess antiproliferative activity in intestinal cells culture and their expression decreases in colonic carcinoma indicating that their deficiency may contribute to the pathogenesis of this disease.  相似文献   

4.
Studies were carried out to investigate central actions of vasoactive intestinal polypeptide (VIP) and neurotensin (NT) on systemic blood pressure (BP), heart rate (HR) and salivary secretion in urethane-anesthetized male rats. Intraventricular (i.c.v.) administration of VIP caused dose-related increases in BP, HR and salivary secretion. Nearly maximum values were obtained at the dose of 2.0 micrograms for BP and 10.0 micrograms for salivary secretion, whereas the increase in HR did not attain the maximum even with the dose of 10.0 micrograms. Administration of hexamethonium (i.v.) completely blocked the increasing response of BP and HR, and the administration of pimozide (i.p.) or phenoxybenzamine (i.v.) reduced them. The increasing response of salivary secretion was almost completely blocked by all of the drugs. The administration of NT (i.c.v.) produced no change in the BP, HR and salivary secretion. The present results indicate that, 1) centrally administered VIP may somehow augment the sympathetic nerve discharge and/or adrenal medulla secretion, and 2) central VIP may play a role in the control of salivary regulation, probably through sympathetic nerves.  相似文献   

5.
Neurotensin (NT) is a biologically active peptide found in specialized epithelial cells (N-cells) in the distal small intestine. In this study we tested the hypothesis that NT may be released by luminal secretagogues, i.e., cholera toxin, Escherichia coli heat-stable toxin and sodium deoxycholate. Cholera toxin elicited net fluid secretion in anesthetized cats. This secretion was accompanied by an increased release of NT-like immunoreactivity (NTLI) into the mesenteric vein when NTLI was measured with either a C-terminally or a N-terminally directed antibody. An increasing plasma NTLI concentration (N-terminally directed antibody) was recorded in the mesenteric vein and femoral artery in cholera experiments. These results indicate that cholera toxin releases NT from the small intestine. Since neurotensin causes intestinal fluid secretion at least in part via an activation of enteric nerves we propose that the N-cell functions as a 'receptor cell' which activates an intramural secretory reflex upon luminal stimulation by cholera toxin. This study does not support a similar role for NT in the secretion elicited by the heat stable toxin of Escherichia coli or by sodium deoxycholate since we were unable to demonstrate any intestinal release of NTLI after exposing the intestine to these secretory agents.  相似文献   

6.
In the goose, alanine and arginine, intravenously or orally administered, act in the same way on pancreatic hormones; they both stimulate insulin and glucagon secretions. Conversely, whereas alanine treatment has no effect on plasma gut GLI, oral arginine stimulates gut GLI secretion. Since stimulation of gut GLI secretion does not occur with i.v. arginine, it may be assumed that this secretion depends on the intestinal transit of arginine and, as already described (Sitbon and Mialhe 1979), of glucose. The results, compared with studies on a similar species (duck) and on mammals, point out that i.v. infusion of alanine stimulates IRI and GLI secretions in the goose and not in the duck. In the same way, arginine i.v. infusion, contrarily to the observation made in the duck, is without effect on gut GLI secretion in the goose. Furthermore, insulin seems to be able to inhibit the alpha cell response to arginine infusion, as in mammals, whereas this is not the case in ducks.  相似文献   

7.
Studies were performed to determine whether the cyclic hexapeptide analog of somatostatin, cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) II, could alter circulating levels of neurotensin (NT) and inhibit the release of NT from small intestine following the intraluminal perfusion of lipid and ETOH. The small intestine of anesthetized rats was perfused with 0.9% NaCl, 1mM ETOH, 100 mM ETOH or 1 mM oleic acid with and without the intravenous infusion of the somatostatin analog. Plasma samples collected from the superior mesenteric vein were extracted, chromatographed on HPLC and assayed with both C-terminal and N-terminal antisera to NT. The basal circulating levels of chromatographically and immunochemically identified NT observed during the perfusion of the small intestine with 0.9% NaCl were significantly lower (p less than 0.01) during the IV infusion of the somatostatin analog as compared to animals infused IV with saline. The 2-3 fold increase in plasma levels of NT observed with the intestinal perfusion of oleic acid and ETOH did not occur in animals simultaneously infused IV with the somatostatin analog. The somatostatin analog was also effective in decreasing the basal levels of NT metabolite NT(1-8) as well as inhibiting the increase in this metabolite that accompanies the stimulated release of NT.  相似文献   

8.
In previous studies we have established that intracisternal (i.c.) but not peripheral (intravenous) administration of neurotensin (NT), a brain and gastrointestinal tridecapeptide, totally prevents the development of gastric lesions produced by cold-restraint stress (CRS) with food-deprived rats. In this investigation, removal of the pituitary and adrenal gland, anterior pituitary hormone secretion and gastric acid secretion were evaluated independently as potential intermediates for NT's protective effect. NT (30 micrograms) produced a significant reduction of gastric lesions incidence and severity in intact and sham-operated controls. Adrenalectomy, but not hypophysectomy totally blocked the protective effect of i.c. NT. In addition, replacement therapy with s.c. prednisone (1 mg/kg) for 5 days following adrenalectomy did not restore the protective activity of central (i.c.) NT in adrenalectomized rats. A significant reduction of serum levels of TSH, PRL and GH following i.c. NT (30 micrograms) was observed after 2h of CRS. The gastrosecretory studies revealed that i.c. NT (30 micrograms) did not affect gastric acid secretion in pylorus ligated rats. However, blockade of peripheral (gut) cholinergic (muscarinic) receptors with i.p. atropine methylbromide (1 mg/kg) significantly raised gastric pH and reduced gastric acid concentration and output. In conclusion, the results of this study indicate that the acute protective effect of brain NT appears to be mediated, at least in part, by the sympathoadrenomedullary axis, and not by the pituitary gland or substances derived from the pituitary or by inhibition of gastric acid secretion.  相似文献   

9.
D Mailman 《Life sciences》1989,45(19):1733-1738
Neurotensin is a regulatory peptide which is found primarily in the ileum and is secreted into the blood and lumen. The physiologic effects of neurotensin are uncertain but in certain pathologic states neurotensin increases to levels which can have effects on many organs. The effects of intravenous, intraarterial and intraluminal neurotensin (0.075-7.5 micrograms/min) on fed canine ileal sodium and water fluxes, potassium secretion, and blood flows were studied. Intravenous and intraarterial infusion of neurotensin increased net sodium, potassium, and water secretion, due to increased secretory fluxes, and increased hematocrits. Intraarterial neurotensin was not more effective than intravenous neurotensin except for stimulating potassium secretion. Neurotensin increased potassium secretion at 0.075 micrograms/min IA, increased sodium and water secretion at 0.75 micrograms/min IA and IV, and increased hematocrit at 7.5 micrograms/min IA and and IV. Total and absorptive site blood flows and arterial and venous pressures were not changed. Intraluminal neurotensin had no effects at any infusion rate. Neurotensin can increase potassium secretion at physiologic levels by a local effect and can increase sodium and water secretion at high physiological-pathological levels through a hormonal mechanism. The secretion is not dependent on cardiovascular changes.  相似文献   

10.
The effects of intracerebroventricular (i.c.v.) administration of opioid peptides with mu-(DAGO), mu- and delta-(DALAMIDE, DADLE) and kappa-(dynorphin) properties on normal and stimulated (cholera toxin) net fluxes of water, Na+ and K+ through a jejunal Thiry-Vella loop were investigated in conscious dogs. Basal net water absorption was slightly, but significantly (P less than 0.05) increased during i.c.v. infusion of DALAMIDE or DAGO (0.5 ng/kg/min) but not DADLE and dynorphin-(1-13) at the same rate; DALAMIDE and DAGO also markedly reduced (by 72.3 and 79.5% respectively) the secretory effects of cholera toxin (0.4 micrograms/ml). Similar effects were obtained with DALAMIDE and DAGO when injected i.c.v. as a bolus (100 ng/kg) prior to cholera toxin infusion; they were suppressed after i.v. pretreatment with naltrexone (0.3 mg/kg) but also with propranolol (0.2 mg/kg). In contrast, i.v. phentolamine (0.2 mg/kg) and bilateral truncal vagotomy, were unable to block their effects. These results suggest that Met-enkephalin can act centrally to affect intestinal transport of (i) water and (ii) electrolytes in dogs. They act probably at central mu-receptors which are involved in the regulation of intestinal secretion mediated through a central or peripheral beta-adrenergic pathway.  相似文献   

11.
The hypothesis that prostaglandins stimulate fetal adrenocortical activity via a central site of action within the fetal brain was tested in chronically catheterized fetal sheep. At day 120 gestation (term = 145 days) fetal sheep were surgically prepared with catheters in the lateral cerebral ventricle, jugular vein and carotid artery and experiments began five days later. Intravenous (i.v.) infusion of prostaglandin E2 (30 or 120 micrograms.h-1) caused a significant dose-related increase in fetal plasma concentrations of ACTH. Despite this increase in ACTH, cortisol was only stimulated after the highest dose of prostaglandin E2. Intracerebroventricular (i.c.v.) infusion of PGE2 (30 micrograms.h-1) also stimulated ACTH secretion although the peak response was delayed and considerably less compared with the same dose administered intravenously. Prostaglandin F2 alpha administered i.v. or i.c.v. had no effect on circulating concentrations of either ACTH or cortisol. These data provide evidence that prostaglandin E2 can stimulate fetal ACTH secretion by acting in the fetal brain. Furthermore, the greater release of ACTH after i.v. compared with i.c.v. prostaglandin E2 suggests that a site of action other than the brain, such as the pituitary gland, may also be important. These results provide further evidence that during late gestation circulating prostaglandins can act to stimulate fetal pituitary-adrenal maturation.  相似文献   

12.
Summary The osmoregulatory effects of intravenously (i.v.) administered angiotensin II (AII) at dose rates of 5, 15 and 45 ng · kg–1 · min–1 were examined in kelp gulls utilizing salt glands and/or kidneys as excretory organs.In birds given i.v. infusion of 1200 mOsmolal NaCl at 0.3 ml · min–1 and utilizing only the salt glands to excrete the load, infusion of AII for 30 min consistently inhibited salt gland function in a dose-dependent manner.In birds given i.v. infusion of 500 mOsmolal NaCl at 0.72 ml · min–1 and utilizing both salt glands and kidneys to excrete the load, each dose of AII given for 2 h inhibited salt gland function but stimulated the kidney, so that the overall outputs of salt and water were enhanced and showed significant (2P<0.01) positive correlations with plasma AII.In birds given i.v. infusion of 200 mOsmolal glucose at 0.5 ml · min–1 and utilizing only the kidneys to excrete the load, low doses of AII (5 and 15 ng · kg–1 · min–1) caused renal salt and water retention, whereas a high dose (45 ng · kg–1 · min–1) stimulated salt and water output.The actions of plasma AII in kelp gulls support the concept that this hormone plays a vital role in avian osmoregulation, having effects on both salt gland and kidney function. Elevation of plasma AII consistently inhibits actively secreting salt glands, but its effects upon renal excretion depend primarily on the osmotic status as well as on the plasma AII concentration. In conditions of salt and volume loading doses of AII stimulate sodium and water excretion. With salt and volume depletion, the action of AII is bi-phasic with low doses promoting renal sodium and water retention but high circulating levels causing natriuresis and diuresis.  相似文献   

13.
胃肠道是人体内最大的激素分泌器官,是调节肽即胃肠激素最丰富的来源。胃肠激素与胃肠功能有很大关系,它们与神经系统一起,共同调节消化器官的运动、分泌和吸收及其他多种功能。促生长素(Ghrelin)、降钙素基因相关肽(CGRP)和神经降压素(NT)是近年来新发现的胃肠激素中的代表。Ghrelin主要由胃组织产生,可以促进胃肠蠕动,还可促进胃酸分泌,这些作用是由迷走神经所介导的,ghrelin还具有对消化道粘膜的保护作用,此作用受多种方式调控。CGRP广泛分布于中枢和外周神经系统,有调节胃肠血流、胃肠分泌及胃肠运动等多种功能,目前学者普遍认为CGRP这些生物学效应的发挥是通过一氧化氮(NO)及前列腺素(PG)介导的。NT广泛分布于脑和胃肠道及其它组织中,由肠道N细胞分泌,能够抑制胃肠运动,对胃肠黏膜细胞具有保护作用,这些作用是迷走神经、调节肽等多种途径介导的。随着对这三种胃肠激素的深入了解,人们将对人体胃肠道疾病产生更加深刻的认识。本文就近年来对Ghrelin、CGRP、NT对胃肠作用的研究作一综述。  相似文献   

14.
The effect of intravenous infusion of neurotensin (NT) and NT-fragments on pentagastrin stimulated gastric acid secretion was investigated in healthy subjects. Neurotensin was infused in three doses (72, 144 and 288 pmol/kg per h). An N-terminal fragment (NT 1-8), a C-terminal fragment (NT 8-13) and an NT-analogue, substituted at the C-terminal tyrosine residue (Phe11-NT) were infused in two doses (72 and 144 pmol/kg per h). Concentrations of the infused peptides were measured in peripheral venous blood by radioimmunoassay. Plasma levels of NT 1-13, NT 1-8 and Phe11-NT increased in a dose-dependent manner; NT 1-13 to 50 (34-69), 78 (54-113) and 143 (112-242) pmol/l (medians and range) at 72, 144 and 288 pmol/kg per h, NT 1-8 to 405 (340-465) and 1215 (915-1300) pmol/l, and Phe11-NT to 200 (110-245) and 390 (250-410) pmol/l at 72 and 144 pmol/kg per h, respectively. Increases in plasma levels of NT 8-13 could not be detected during the infusion, suggesting that the fragment is rapidly metabolized in man. Neurotensin 1-13 inhibited gastric acid secretion in a dose-dependent manner and the decrease in gastric acid secretion was linearly related to plasma levels of NT 1-13. Neurotensin 1-8 and NT 8-13 inhibited gastric acid secretion only at 144 pmol/kg per h, while the analogue Phe11-NT had no effect. The results showed that the inhibition of gastric acid secretion produced by NT was dose-dependent and linearly related to circulating levels of NT, and that under physiological conditions this effect presumably is elicited by the C-terminal part of the peptide.  相似文献   

15.
To investigate the functional relationship between the enteric nervous system and the intestinal neurotensin (N) cells, the release of neurotensin (NT) was measured upon vascular 8-min infusion periods of various neurotransmitters and neuropeptides in an isolated vascularly perfused rat jejunoileum. NT-like immunoreactivity (NT-LI) was measured with an antiserum that specifically recognizes intact NT. The cholinergic agonists methacholine and carbachol produced a strong release of NT-LI (250% and 700% of basal, respectively at 10(-5) M). The infusion of a lower dose (10(-7) M) was less effective in both cases. The nicotinic receptor agonist DMPP (10(-4) M) had no significant effect on NT-LI release. Norepinephrine (10(-6) M) produced a moderate and well-sustained secretion of NT (200% of basal). Infusion of higher doses of these neurotransmitters dramatically increased the arterial pressure. G-amino-n-butyric acid (GABA), histamine, serotonin and dopamine administered at final concentrations up to 10(-5) M had no effect on NT-LI release. In contrast, gastrin-releasing peptide and bombesin induced a dose-dependent transient increase of portal NT-LI (maximal value at 10(-7) M: 1000% of basal) followed by a rapid return to near basal values. Substance P (10(-7) M) evoked a prompt release of NT-LI with a peak at 600% of basal followed by a decline to 200% of basal at the end of the session. Leu-enkephalin and calcitonin-gene-related-peptide (CGRP, 10(-7) M) produced a small rise in portal NT-LI, while Met-enkephalin, dynorphin, vasoactive intestinal peptide (VIP), galanin, neuropeptide Y (NPY), peptide histidine isoleucine (PHI), neuromedin U and thyrotropin releasing hormone (TRH) had no stimulatory effect. Our results indicate that additionally to the secretion of NT induced by cholinergic agents and bombesin, substance P and to a lesser extent Leu-enkephalin are capable of stimulating NT release in the rat.  相似文献   

16.
Conscious ovariectomized (OVX) rats bearing a cannula implanted in the third ventricle were injected with 2 μl of 0.9% NaCl containing varying doses of substance P (SP) or neurotensin (NT) and plasma GH and TSH levels were measured by RIA in jugular blood samples drawn through an indwelling silastic catheter. Control injections of physiologic saline iv or into the third ventricle did not modify plasma hormone levels. Intraventricular injection of SP or NT at doses of either 0.5 or 2 μg elevated plasma GH concentrations within 5 min and they remained elevated for 60 min. Third ventricular injection of similar doses of SP or NT had no effect on plasma TSH. An intermediate dose of 1 μg of SP or NT given iv had no effect on plasma GH but NT elevated plasma TSH. Incubation of hemipituitaries from OVX rats with varying doses of SP or NT did not alter GH release into the medium but TSH release was enhanced with NT at doses of 100 or more ng/ml of medium. It is suggested that SP acts centrally to stimulate growth hormone-releasing factor (GRF) or to inhibit somatostatin release and thereby enhance GH release and that NT acts directly on the pituitary to stimulate TSH release.  相似文献   

17.
The secretion of ileal neurotensin (NT) results from events occurring at the apical and basal side of the N-cells. The hypothesis of a functional relationship between cholinergic and peptidergic neurones with the N-cell was investigated in the present study utilizing the isolated vascularly perfused rat ileum. Intraarterial methacholine (MC, 10(-4) M) evoked a prompt and well sustained release of NT in the portal effluent (plateau value at 500% of basal). This effect was dose-dependent over the range of 10(-6) M to 10(-4) M. Bombesin (B) provoked a dose-dependent peak secretion of NT (800% of basal at 10(-7) M) followed by a rapid return to almost basal levels. The B-induced NT release remained unaltered upon 10(-6) M tetrodotoxin (TTX) or 10(-5) M atropine infusion. Substance P (SP) potently stimulated the release of NT. The maximal response, consisting of a sustained secretion, was observed at a concentration of 10(-7) M (350% of basal) while 10(-6) M SP induced a transient release. TTX or atropine did not reduce significantly the SP-induced secretion of NT. Neurokinin A and B did not increase NT concentrations in the portal effluent. B synergistically increased the secretion of NT induced by SP. Atropine or TTX did not modify the effect of combined SP and B infusion. MC potentiated the release of NT induced by B but not that evoked by SP. Combined infusion of SP, B and MC produced the largest output of NT. In conclusion, B, SP and MC are strong stimulants of NT release in rats. In addition, the cooperative effects of these transmitters argue in favor of a complex functional relationship between the intramural nervous network and the intestinal N-cells in rats.  相似文献   

18.
Posttranslational processing of the neurotensin/neuromedin N (NT/NN) precursor has been investigated in mouse brain and small intestine by means of region-specific radioimmunoassays coupled to chromatographic fractionations. In brain, total NT/NN immunoreactivity measured with a common C-terminal antiserum was 15.72 pmol/g. NT measured with an N-terminal antiserum was 9.74 pmol/g and NN measured with an N-terminal antiserum was 5.98 pmol/g. In small intestine, combined NT/NN immunoreactivity was 108.55 pmol/g, consisting of 66.37 pmol/g NT but only 0.96 pmol/g NN. Gel permeation chromatography and reverse phase HPLC revealed that the large discrepancy in the NT and NN values obtained in small intestinal extracts was due to the presence of a high molecular weight, hydrophobic peptide, which was reactive only with the common C-terminally directed antiserum. Pepsinization of this generated an immunoreactive peptide with similar chromatographic characteristics to NN. In mouse intestine, NN is only partially cleaved from the common NT/NN precursor, resulting in the presence of an N-terminally extended molecular species. This novel molecular species of neuromedin N may be the physiological mediator of certain peripheral biological effects hitherto attributed to neurotensin or neuromedin N.  相似文献   

19.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

20.
The role of arginine vasopressin (AVP) in blood pressure regulation in humans and animals is still controversial. The present study was designed to investigate the effects of AVP on blood pressure and the excretion of sodium and prostaglandin (PG) E2 in rabbits. AVP dissolved in 0.01 M acetic acid was infused subcutaneously at a rate of 0.86 ng/kg/min with a miniosmotic pump into 12 New Zealand white rabbits (2.7-3.4 kg), while 10 controls were given vehicle alone. AVP infusion resulted in a 3.5-fold rise in the level of plasma AVP (21.8 +/- 4.4 (SEM) pg/ml) as compared with controls, associated with a significant decrease in the urine volume and urinary excretion of sodium. The PGE2 excretion was increased 1.8-fold after AVP infusion. In the chronic AVP-infused group, blood pressure was not significantly increased, but the acute vascular response to AVP was significantly attenuated without any changes in the vasopressor response to angiotensin II. Preadministration of V1-antagonist completely abolished the vasopressor action of AVP, but not that of angiotensin II, in either group. These results suggest that circulating AVP within physiological range of concentrations may stimulate renal PGE2 synthesis and attenuate the vascular response through vascular V1 receptors without affecting the baroreflex, which may be attenuated through V2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号